This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right-unbounded closed intervals are closed sets of the standard topology on RR . (Contributed by Mario Carneiro, 17-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icopnfcld | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 [,) +∞ ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 2 | 1 | a1i | ⊢ ( 𝐴 ∈ ℝ → -∞ ∈ ℝ* ) |
| 3 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 4 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 5 | 4 | a1i | ⊢ ( 𝐴 ∈ ℝ → +∞ ∈ ℝ* ) |
| 6 | mnflt | ⊢ ( 𝐴 ∈ ℝ → -∞ < 𝐴 ) | |
| 7 | ltpnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) | |
| 8 | df-ioo | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 9 | df-ico | ⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 10 | xrlenlt | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐴 ) ) | |
| 11 | xrlttr | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑤 < 𝐴 ∧ 𝐴 < +∞ ) → 𝑤 < +∞ ) ) | |
| 12 | xrltletr | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( -∞ < 𝐴 ∧ 𝐴 ≤ 𝑤 ) → -∞ < 𝑤 ) ) | |
| 13 | 8 9 10 8 11 12 | ixxun | ⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) → ( ( -∞ (,) 𝐴 ) ∪ ( 𝐴 [,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
| 14 | 2 3 5 6 7 13 | syl32anc | ⊢ ( 𝐴 ∈ ℝ → ( ( -∞ (,) 𝐴 ) ∪ ( 𝐴 [,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
| 15 | ioomax | ⊢ ( -∞ (,) +∞ ) = ℝ | |
| 16 | 14 15 | eqtrdi | ⊢ ( 𝐴 ∈ ℝ → ( ( -∞ (,) 𝐴 ) ∪ ( 𝐴 [,) +∞ ) ) = ℝ ) |
| 17 | ioossre | ⊢ ( -∞ (,) 𝐴 ) ⊆ ℝ | |
| 18 | 8 9 10 | ixxdisj | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( -∞ (,) 𝐴 ) ∩ ( 𝐴 [,) +∞ ) ) = ∅ ) |
| 19 | 1 3 5 18 | mp3an2i | ⊢ ( 𝐴 ∈ ℝ → ( ( -∞ (,) 𝐴 ) ∩ ( 𝐴 [,) +∞ ) ) = ∅ ) |
| 20 | uneqdifeq | ⊢ ( ( ( -∞ (,) 𝐴 ) ⊆ ℝ ∧ ( ( -∞ (,) 𝐴 ) ∩ ( 𝐴 [,) +∞ ) ) = ∅ ) → ( ( ( -∞ (,) 𝐴 ) ∪ ( 𝐴 [,) +∞ ) ) = ℝ ↔ ( ℝ ∖ ( -∞ (,) 𝐴 ) ) = ( 𝐴 [,) +∞ ) ) ) | |
| 21 | 17 19 20 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( ( ( -∞ (,) 𝐴 ) ∪ ( 𝐴 [,) +∞ ) ) = ℝ ↔ ( ℝ ∖ ( -∞ (,) 𝐴 ) ) = ( 𝐴 [,) +∞ ) ) ) |
| 22 | 16 21 | mpbid | ⊢ ( 𝐴 ∈ ℝ → ( ℝ ∖ ( -∞ (,) 𝐴 ) ) = ( 𝐴 [,) +∞ ) ) |
| 23 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 24 | iooretop | ⊢ ( -∞ (,) 𝐴 ) ∈ ( topGen ‘ ran (,) ) | |
| 25 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 26 | 25 | opncld | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( -∞ (,) 𝐴 ) ∈ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ( -∞ (,) 𝐴 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 27 | 23 24 26 | mp2an | ⊢ ( ℝ ∖ ( -∞ (,) 𝐴 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
| 28 | 22 27 | eqeltrrdi | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 [,) +∞ ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |