This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right-unbounded closed intervals are closed sets of the standard topology on RR . (Contributed by Mario Carneiro, 17-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icopnfcld | |- ( A e. RR -> ( A [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr | |- -oo e. RR* |
|
| 2 | 1 | a1i | |- ( A e. RR -> -oo e. RR* ) |
| 3 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 4 | pnfxr | |- +oo e. RR* |
|
| 5 | 4 | a1i | |- ( A e. RR -> +oo e. RR* ) |
| 6 | mnflt | |- ( A e. RR -> -oo < A ) |
|
| 7 | ltpnf | |- ( A e. RR -> A < +oo ) |
|
| 8 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 9 | df-ico | |- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
|
| 10 | xrlenlt | |- ( ( A e. RR* /\ w e. RR* ) -> ( A <_ w <-> -. w < A ) ) |
|
| 11 | xrlttr | |- ( ( w e. RR* /\ A e. RR* /\ +oo e. RR* ) -> ( ( w < A /\ A < +oo ) -> w < +oo ) ) |
|
| 12 | xrltletr | |- ( ( -oo e. RR* /\ A e. RR* /\ w e. RR* ) -> ( ( -oo < A /\ A <_ w ) -> -oo < w ) ) |
|
| 13 | 8 9 10 8 11 12 | ixxun | |- ( ( ( -oo e. RR* /\ A e. RR* /\ +oo e. RR* ) /\ ( -oo < A /\ A < +oo ) ) -> ( ( -oo (,) A ) u. ( A [,) +oo ) ) = ( -oo (,) +oo ) ) |
| 14 | 2 3 5 6 7 13 | syl32anc | |- ( A e. RR -> ( ( -oo (,) A ) u. ( A [,) +oo ) ) = ( -oo (,) +oo ) ) |
| 15 | ioomax | |- ( -oo (,) +oo ) = RR |
|
| 16 | 14 15 | eqtrdi | |- ( A e. RR -> ( ( -oo (,) A ) u. ( A [,) +oo ) ) = RR ) |
| 17 | ioossre | |- ( -oo (,) A ) C_ RR |
|
| 18 | 8 9 10 | ixxdisj | |- ( ( -oo e. RR* /\ A e. RR* /\ +oo e. RR* ) -> ( ( -oo (,) A ) i^i ( A [,) +oo ) ) = (/) ) |
| 19 | 1 3 5 18 | mp3an2i | |- ( A e. RR -> ( ( -oo (,) A ) i^i ( A [,) +oo ) ) = (/) ) |
| 20 | uneqdifeq | |- ( ( ( -oo (,) A ) C_ RR /\ ( ( -oo (,) A ) i^i ( A [,) +oo ) ) = (/) ) -> ( ( ( -oo (,) A ) u. ( A [,) +oo ) ) = RR <-> ( RR \ ( -oo (,) A ) ) = ( A [,) +oo ) ) ) |
|
| 21 | 17 19 20 | sylancr | |- ( A e. RR -> ( ( ( -oo (,) A ) u. ( A [,) +oo ) ) = RR <-> ( RR \ ( -oo (,) A ) ) = ( A [,) +oo ) ) ) |
| 22 | 16 21 | mpbid | |- ( A e. RR -> ( RR \ ( -oo (,) A ) ) = ( A [,) +oo ) ) |
| 23 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 24 | iooretop | |- ( -oo (,) A ) e. ( topGen ` ran (,) ) |
|
| 25 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 26 | 25 | opncld | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( -oo (,) A ) e. ( topGen ` ran (,) ) ) -> ( RR \ ( -oo (,) A ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 27 | 23 24 26 | mp2an | |- ( RR \ ( -oo (,) A ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) |
| 28 | 22 27 | eqeltrrdi | |- ( A e. RR -> ( A [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |