This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size three is an unordered triple if and only if it contains three different elements. (Contributed by AV, 21-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash3tpexb | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash3tpde | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) | |
| 2 | 1 | ex | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 3 → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |
| 3 | fveq2 | ⊢ ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( ♯ ‘ 𝑉 ) = ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) ) | |
| 4 | df-tp | ⊢ { 𝑎 , 𝑏 , 𝑐 } = ( { 𝑎 , 𝑏 } ∪ { 𝑐 } ) | |
| 5 | 4 | a1i | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → { 𝑎 , 𝑏 , 𝑐 } = ( { 𝑎 , 𝑏 } ∪ { 𝑐 } ) ) |
| 6 | 5 | fveq2d | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = ( ♯ ‘ ( { 𝑎 , 𝑏 } ∪ { 𝑐 } ) ) ) |
| 7 | prfi | ⊢ { 𝑎 , 𝑏 } ∈ Fin | |
| 8 | snfi | ⊢ { 𝑐 } ∈ Fin | |
| 9 | disjprsn | ⊢ ( ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → ( { 𝑎 , 𝑏 } ∩ { 𝑐 } ) = ∅ ) | |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → ( { 𝑎 , 𝑏 } ∩ { 𝑐 } ) = ∅ ) |
| 11 | hashun | ⊢ ( ( { 𝑎 , 𝑏 } ∈ Fin ∧ { 𝑐 } ∈ Fin ∧ ( { 𝑎 , 𝑏 } ∩ { 𝑐 } ) = ∅ ) → ( ♯ ‘ ( { 𝑎 , 𝑏 } ∪ { 𝑐 } ) ) = ( ( ♯ ‘ { 𝑎 , 𝑏 } ) + ( ♯ ‘ { 𝑐 } ) ) ) | |
| 12 | 7 8 10 11 | mp3an12i | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → ( ♯ ‘ ( { 𝑎 , 𝑏 } ∪ { 𝑐 } ) ) = ( ( ♯ ‘ { 𝑎 , 𝑏 } ) + ( ♯ ‘ { 𝑐 } ) ) ) |
| 13 | hashprg | ⊢ ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) → ( 𝑎 ≠ 𝑏 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) | |
| 14 | 13 | el2v | ⊢ ( 𝑎 ≠ 𝑏 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) |
| 15 | 14 | biimpi | ⊢ ( 𝑎 ≠ 𝑏 → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) |
| 17 | hashsng | ⊢ ( 𝑐 ∈ V → ( ♯ ‘ { 𝑐 } ) = 1 ) | |
| 18 | 17 | elv | ⊢ ( ♯ ‘ { 𝑐 } ) = 1 |
| 19 | 18 | a1i | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → ( ♯ ‘ { 𝑐 } ) = 1 ) |
| 20 | 16 19 | oveq12d | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → ( ( ♯ ‘ { 𝑎 , 𝑏 } ) + ( ♯ ‘ { 𝑐 } ) ) = ( 2 + 1 ) ) |
| 21 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 22 | 20 21 | eqtrdi | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → ( ( ♯ ‘ { 𝑎 , 𝑏 } ) + ( ♯ ‘ { 𝑐 } ) ) = 3 ) |
| 23 | 6 12 22 | 3eqtrd | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) |
| 24 | 3 23 | sylan9eqr | ⊢ ( ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( ♯ ‘ 𝑉 ) = 3 ) |
| 25 | 24 | a1i | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( ♯ ‘ 𝑉 ) = 3 ) ) |
| 26 | 25 | exlimdv | ⊢ ( 𝑉 ∈ 𝑊 → ( ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( ♯ ‘ 𝑉 ) = 3 ) ) |
| 27 | 26 | exlimdvv | ⊢ ( 𝑉 ∈ 𝑊 → ( ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( ♯ ‘ 𝑉 ) = 3 ) ) |
| 28 | 2 27 | impbid | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |