This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size three is a proper unordered triple. (Contributed by AV, 21-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash3tpb | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash3tpexb | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) | |
| 2 | vex | ⊢ 𝑎 ∈ V | |
| 3 | 2 | tpid1 | ⊢ 𝑎 ∈ { 𝑎 , 𝑏 , 𝑐 } |
| 4 | vex | ⊢ 𝑏 ∈ V | |
| 5 | 4 | tpid2 | ⊢ 𝑏 ∈ { 𝑎 , 𝑏 , 𝑐 } |
| 6 | vex | ⊢ 𝑐 ∈ V | |
| 7 | 6 | tpid3 | ⊢ 𝑐 ∈ { 𝑎 , 𝑏 , 𝑐 } |
| 8 | 3 5 7 | 3pm3.2i | ⊢ ( 𝑎 ∈ { 𝑎 , 𝑏 , 𝑐 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 , 𝑐 } ∧ 𝑐 ∈ { 𝑎 , 𝑏 , 𝑐 } ) |
| 9 | eleq2 | ⊢ ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑎 ∈ 𝑉 ↔ 𝑎 ∈ { 𝑎 , 𝑏 , 𝑐 } ) ) | |
| 10 | eleq2 | ⊢ ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑏 ∈ 𝑉 ↔ 𝑏 ∈ { 𝑎 , 𝑏 , 𝑐 } ) ) | |
| 11 | eleq2 | ⊢ ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑐 ∈ 𝑉 ↔ 𝑐 ∈ { 𝑎 , 𝑏 , 𝑐 } ) ) | |
| 12 | 9 10 11 | 3anbi123d | ⊢ ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ↔ ( 𝑎 ∈ { 𝑎 , 𝑏 , 𝑐 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 , 𝑐 } ∧ 𝑐 ∈ { 𝑎 , 𝑏 , 𝑐 } ) ) ) |
| 13 | 8 12 | mpbiri | ⊢ ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) |
| 14 | 13 | adantl | ⊢ ( ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) |
| 15 | 14 | pm4.71ri | ⊢ ( ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ↔ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |
| 16 | 15 | 3exbii | ⊢ ( ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ↔ ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |
| 17 | 16 | a1i | ⊢ ( 𝑉 ∈ 𝑊 → ( ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ↔ ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) ) |
| 18 | r3ex | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ↔ ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) | |
| 19 | 18 | bicomi | ⊢ ( ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) |
| 20 | 19 | a1i | ⊢ ( 𝑉 ∈ 𝑊 → ( ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |
| 21 | 1 17 20 | 3bitrd | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |