This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size three is an unordered triple of three different elements. (Contributed by AV, 21-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash3tpde | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash3tr | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) | |
| 2 | ax-1 | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) | |
| 3 | 3ianor | ⊢ ( ¬ ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ↔ ( ¬ 𝑎 ≠ 𝑏 ∨ ¬ 𝑎 ≠ 𝑐 ∨ ¬ 𝑏 ≠ 𝑐 ) ) | |
| 4 | nne | ⊢ ( ¬ 𝑎 ≠ 𝑏 ↔ 𝑎 = 𝑏 ) | |
| 5 | nne | ⊢ ( ¬ 𝑎 ≠ 𝑐 ↔ 𝑎 = 𝑐 ) | |
| 6 | nne | ⊢ ( ¬ 𝑏 ≠ 𝑐 ↔ 𝑏 = 𝑐 ) | |
| 7 | 4 5 6 | 3orbi123i | ⊢ ( ( ¬ 𝑎 ≠ 𝑏 ∨ ¬ 𝑎 ≠ 𝑐 ∨ ¬ 𝑏 ≠ 𝑐 ) ↔ ( 𝑎 = 𝑏 ∨ 𝑎 = 𝑐 ∨ 𝑏 = 𝑐 ) ) |
| 8 | 3 7 | bitri | ⊢ ( ¬ ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ↔ ( 𝑎 = 𝑏 ∨ 𝑎 = 𝑐 ∨ 𝑏 = 𝑐 ) ) |
| 9 | tpeq1 | ⊢ ( 𝑎 = 𝑏 → { 𝑎 , 𝑏 , 𝑐 } = { 𝑏 , 𝑏 , 𝑐 } ) | |
| 10 | tpidm12 | ⊢ { 𝑏 , 𝑏 , 𝑐 } = { 𝑏 , 𝑐 } | |
| 11 | 9 10 | eqtrdi | ⊢ ( 𝑎 = 𝑏 → { 𝑎 , 𝑏 , 𝑐 } = { 𝑏 , 𝑐 } ) |
| 12 | 11 | eqeq2d | ⊢ ( 𝑎 = 𝑏 → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ↔ 𝑉 = { 𝑏 , 𝑐 } ) ) |
| 13 | fveqeq2 | ⊢ ( 𝑉 = { 𝑏 , 𝑐 } → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ( ♯ ‘ { 𝑏 , 𝑐 } ) = 3 ) ) | |
| 14 | hashprlei | ⊢ ( { 𝑏 , 𝑐 } ∈ Fin ∧ ( ♯ ‘ { 𝑏 , 𝑐 } ) ≤ 2 ) | |
| 15 | breq1 | ⊢ ( ( ♯ ‘ { 𝑏 , 𝑐 } ) = 3 → ( ( ♯ ‘ { 𝑏 , 𝑐 } ) ≤ 2 ↔ 3 ≤ 2 ) ) | |
| 16 | 2lt3 | ⊢ 2 < 3 | |
| 17 | 2re | ⊢ 2 ∈ ℝ | |
| 18 | 3re | ⊢ 3 ∈ ℝ | |
| 19 | 17 18 | ltnlei | ⊢ ( 2 < 3 ↔ ¬ 3 ≤ 2 ) |
| 20 | 16 19 | mpbi | ⊢ ¬ 3 ≤ 2 |
| 21 | 20 | pm2.21i | ⊢ ( 3 ≤ 2 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) |
| 22 | 15 21 | biimtrdi | ⊢ ( ( ♯ ‘ { 𝑏 , 𝑐 } ) = 3 → ( ( ♯ ‘ { 𝑏 , 𝑐 } ) ≤ 2 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 23 | 22 | com12 | ⊢ ( ( ♯ ‘ { 𝑏 , 𝑐 } ) ≤ 2 → ( ( ♯ ‘ { 𝑏 , 𝑐 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( { 𝑏 , 𝑐 } ∈ Fin ∧ ( ♯ ‘ { 𝑏 , 𝑐 } ) ≤ 2 ) → ( ( ♯ ‘ { 𝑏 , 𝑐 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 25 | 14 24 | ax-mp | ⊢ ( ( ♯ ‘ { 𝑏 , 𝑐 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) |
| 26 | 13 25 | biimtrdi | ⊢ ( 𝑉 = { 𝑏 , 𝑐 } → ( ( ♯ ‘ 𝑉 ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 27 | 26 | adantld | ⊢ ( 𝑉 = { 𝑏 , 𝑐 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 28 | 12 27 | biimtrdi | ⊢ ( 𝑎 = 𝑏 → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) ) |
| 29 | tpeq1 | ⊢ ( 𝑎 = 𝑐 → { 𝑎 , 𝑏 , 𝑐 } = { 𝑐 , 𝑏 , 𝑐 } ) | |
| 30 | tpidm13 | ⊢ { 𝑐 , 𝑏 , 𝑐 } = { 𝑐 , 𝑏 } | |
| 31 | 29 30 | eqtrdi | ⊢ ( 𝑎 = 𝑐 → { 𝑎 , 𝑏 , 𝑐 } = { 𝑐 , 𝑏 } ) |
| 32 | 31 | eqeq2d | ⊢ ( 𝑎 = 𝑐 → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ↔ 𝑉 = { 𝑐 , 𝑏 } ) ) |
| 33 | fveqeq2 | ⊢ ( 𝑉 = { 𝑐 , 𝑏 } → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ( ♯ ‘ { 𝑐 , 𝑏 } ) = 3 ) ) | |
| 34 | hashprlei | ⊢ ( { 𝑐 , 𝑏 } ∈ Fin ∧ ( ♯ ‘ { 𝑐 , 𝑏 } ) ≤ 2 ) | |
| 35 | breq1 | ⊢ ( ( ♯ ‘ { 𝑐 , 𝑏 } ) = 3 → ( ( ♯ ‘ { 𝑐 , 𝑏 } ) ≤ 2 ↔ 3 ≤ 2 ) ) | |
| 36 | 35 21 | biimtrdi | ⊢ ( ( ♯ ‘ { 𝑐 , 𝑏 } ) = 3 → ( ( ♯ ‘ { 𝑐 , 𝑏 } ) ≤ 2 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 37 | 36 | com12 | ⊢ ( ( ♯ ‘ { 𝑐 , 𝑏 } ) ≤ 2 → ( ( ♯ ‘ { 𝑐 , 𝑏 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( { 𝑐 , 𝑏 } ∈ Fin ∧ ( ♯ ‘ { 𝑐 , 𝑏 } ) ≤ 2 ) → ( ( ♯ ‘ { 𝑐 , 𝑏 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 39 | 34 38 | ax-mp | ⊢ ( ( ♯ ‘ { 𝑐 , 𝑏 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) |
| 40 | 33 39 | biimtrdi | ⊢ ( 𝑉 = { 𝑐 , 𝑏 } → ( ( ♯ ‘ 𝑉 ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 41 | 40 | adantld | ⊢ ( 𝑉 = { 𝑐 , 𝑏 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 42 | 32 41 | biimtrdi | ⊢ ( 𝑎 = 𝑐 → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) ) |
| 43 | tpeq2 | ⊢ ( 𝑏 = 𝑐 → { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑐 , 𝑐 } ) | |
| 44 | tpidm23 | ⊢ { 𝑎 , 𝑐 , 𝑐 } = { 𝑎 , 𝑐 } | |
| 45 | 43 44 | eqtrdi | ⊢ ( 𝑏 = 𝑐 → { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑐 } ) |
| 46 | 45 | eqeq2d | ⊢ ( 𝑏 = 𝑐 → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ↔ 𝑉 = { 𝑎 , 𝑐 } ) ) |
| 47 | fveqeq2 | ⊢ ( 𝑉 = { 𝑎 , 𝑐 } → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑐 } ) = 3 ) ) | |
| 48 | hashprlei | ⊢ ( { 𝑎 , 𝑐 } ∈ Fin ∧ ( ♯ ‘ { 𝑎 , 𝑐 } ) ≤ 2 ) | |
| 49 | breq1 | ⊢ ( ( ♯ ‘ { 𝑎 , 𝑐 } ) = 3 → ( ( ♯ ‘ { 𝑎 , 𝑐 } ) ≤ 2 ↔ 3 ≤ 2 ) ) | |
| 50 | 49 21 | biimtrdi | ⊢ ( ( ♯ ‘ { 𝑎 , 𝑐 } ) = 3 → ( ( ♯ ‘ { 𝑎 , 𝑐 } ) ≤ 2 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 51 | 50 | com12 | ⊢ ( ( ♯ ‘ { 𝑎 , 𝑐 } ) ≤ 2 → ( ( ♯ ‘ { 𝑎 , 𝑐 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 52 | 51 | adantl | ⊢ ( ( { 𝑎 , 𝑐 } ∈ Fin ∧ ( ♯ ‘ { 𝑎 , 𝑐 } ) ≤ 2 ) → ( ( ♯ ‘ { 𝑎 , 𝑐 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 53 | 48 52 | ax-mp | ⊢ ( ( ♯ ‘ { 𝑎 , 𝑐 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) |
| 54 | 47 53 | biimtrdi | ⊢ ( 𝑉 = { 𝑎 , 𝑐 } → ( ( ♯ ‘ 𝑉 ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 55 | 54 | adantld | ⊢ ( 𝑉 = { 𝑎 , 𝑐 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 56 | 46 55 | biimtrdi | ⊢ ( 𝑏 = 𝑐 → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) ) |
| 57 | 28 42 56 | 3jaoi | ⊢ ( ( 𝑎 = 𝑏 ∨ 𝑎 = 𝑐 ∨ 𝑏 = 𝑐 ) → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) ) |
| 58 | 57 | impcomd | ⊢ ( ( 𝑎 = 𝑏 ∨ 𝑎 = 𝑐 ∨ 𝑏 = 𝑐 ) → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 59 | 8 58 | sylbi | ⊢ ( ¬ ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
| 60 | 2 59 | pm2.61i | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) |
| 61 | simpr | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) | |
| 62 | 60 61 | jca | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) |
| 63 | 62 | ex | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |
| 64 | 63 | eximdv | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( ∃ 𝑐 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |
| 65 | 64 | 2eximdv | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |
| 66 | 1 65 | mpd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) |