This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harmonicbnd2 | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) | |
| 2 | 1 | sumeq1d | ⊢ ( 𝑛 = 𝑁 → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) ) |
| 3 | fvoveq1 | ⊢ ( 𝑛 = 𝑁 → ( log ‘ ( 𝑛 + 1 ) ) = ( log ‘ ( 𝑁 + 1 ) ) ) | |
| 4 | 2 3 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) |
| 5 | 4 | eleq1d | ⊢ ( 𝑛 = 𝑁 → ( ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ↔ ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) ) |
| 6 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| 7 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | |
| 8 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) | |
| 9 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( 1 / 𝑘 ) = ( 1 / 𝑛 ) ) | |
| 10 | 9 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( 1 + ( 1 / 𝑘 ) ) = ( 1 + ( 1 / 𝑛 ) ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝑘 = 𝑛 → ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) = ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) |
| 12 | 9 11 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) = ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) |
| 13 | 12 | cbvmptv | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) |
| 14 | 6 7 8 13 | emcllem7 | ⊢ ( γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ∧ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) : ℕ ⟶ ( γ [,] 1 ) ∧ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |
| 15 | 14 | simp3i | ⊢ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) |
| 16 | 7 | fmpt | ⊢ ( ∀ 𝑛 ∈ ℕ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ↔ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |
| 17 | 15 16 | mpbir | ⊢ ∀ 𝑛 ∈ ℕ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) |
| 18 | 5 17 | vtoclri | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |