This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Euler-Mascheroni constant is positive. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | emgt0 | ⊢ 0 < γ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | log2le1 | ⊢ ( log ‘ 2 ) < 1 | |
| 2 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 3 | relogcl | ⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) | |
| 4 | 2 3 | ax-mp | ⊢ ( log ‘ 2 ) ∈ ℝ |
| 5 | 1re | ⊢ 1 ∈ ℝ | |
| 6 | 4 5 | posdifi | ⊢ ( ( log ‘ 2 ) < 1 ↔ 0 < ( 1 − ( log ‘ 2 ) ) ) |
| 7 | 1 6 | mpbi | ⊢ 0 < ( 1 − ( log ‘ 2 ) ) |
| 8 | emcl | ⊢ γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) | |
| 9 | 5 4 | resubcli | ⊢ ( 1 − ( log ‘ 2 ) ) ∈ ℝ |
| 10 | 9 5 | elicc2i | ⊢ ( γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ↔ ( γ ∈ ℝ ∧ ( 1 − ( log ‘ 2 ) ) ≤ γ ∧ γ ≤ 1 ) ) |
| 11 | 10 | simp2bi | ⊢ ( γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) → ( 1 − ( log ‘ 2 ) ) ≤ γ ) |
| 12 | 8 11 | ax-mp | ⊢ ( 1 − ( log ‘ 2 ) ) ≤ γ |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | emre | ⊢ γ ∈ ℝ | |
| 15 | 13 9 14 | ltletri | ⊢ ( ( 0 < ( 1 − ( log ‘ 2 ) ) ∧ ( 1 − ( log ‘ 2 ) ) ≤ γ ) → 0 < γ ) |
| 16 | 7 12 15 | mp2an | ⊢ 0 < γ |