This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 17-Jul-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h1de2.1 | ⊢ 𝐴 ∈ ℋ | |
| h1de2.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | h1de2i | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1de2.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | h1de2.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 2 2 | hicli | ⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
| 4 | 3 1 | hvmulcli | ⊢ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ∈ ℋ |
| 5 | 1 2 | hicli | ⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 6 | 5 2 | hvmulcli | ⊢ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ∈ ℋ |
| 7 | his2sub | ⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) = ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) ) | |
| 8 | 4 6 1 7 | mp3an | ⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) = ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) |
| 9 | ax-his3 | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) | |
| 10 | 3 1 1 9 | mp3an | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) |
| 11 | 1 1 | hicli | ⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℂ |
| 12 | 3 11 | mulcomi | ⊢ ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) |
| 13 | 10 12 | eqtri | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) |
| 14 | ax-his3 | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) | |
| 15 | 5 2 1 14 | mp3an | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) |
| 16 | 13 15 | oveq12i | ⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
| 17 | 8 16 | eqtr2i | ⊢ ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) |
| 18 | his2sub | ⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐵 ) = ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) ) | |
| 19 | 4 6 2 18 | mp3an | ⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐵 ) = ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) |
| 20 | 3 5 | mulcomi | ⊢ ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) |
| 21 | ax-his3 | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) ) | |
| 22 | 3 1 2 21 | mp3an | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) |
| 23 | ax-his3 | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) ) | |
| 24 | 5 2 2 23 | mp3an | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) |
| 25 | 20 22 24 | 3eqtr4i | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) = ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) |
| 26 | 4 2 | hicli | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) ∈ ℂ |
| 27 | 6 2 | hicli | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ∈ ℂ |
| 28 | 26 27 | subeq0i | ⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) = 0 ↔ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) = ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) |
| 29 | 25 28 | mpbir | ⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) − ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) = 0 |
| 30 | 19 29 | eqtri | ⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐵 ) = 0 |
| 31 | 2 | h1dei | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
| 32 | 1 31 | mpbiran | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
| 33 | 4 6 | hvsubcli | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℋ |
| 34 | oveq2 | ⊢ ( 𝑥 = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) → ( 𝐵 ·ih 𝑥 ) = ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) ) | |
| 35 | 34 | eqeq1d | ⊢ ( 𝑥 = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) → ( ( 𝐵 ·ih 𝑥 ) = 0 ↔ ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) |
| 36 | oveq2 | ⊢ ( 𝑥 = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) → ( 𝐴 ·ih 𝑥 ) = ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) ) | |
| 37 | 36 | eqeq1d | ⊢ ( 𝑥 = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) → ( ( 𝐴 ·ih 𝑥 ) = 0 ↔ ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) |
| 38 | 35 37 | imbi12d | ⊢ ( 𝑥 = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) → ( ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 → ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) ) |
| 39 | 38 | rspcv | ⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) → ( ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 → ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) ) |
| 40 | 33 39 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) → ( ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 → ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) |
| 41 | 32 40 | sylbi | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 → ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) |
| 42 | orthcom | ⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) | |
| 43 | 33 2 42 | mp2an | ⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) |
| 44 | orthcom | ⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) = 0 ↔ ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) ) | |
| 45 | 33 1 44 | mp2an | ⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) = 0 ↔ ( 𝐴 ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) |
| 46 | 41 43 45 | 3imtr4g | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐵 ) = 0 → ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) = 0 ) ) |
| 47 | 30 46 | mpi | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih 𝐴 ) = 0 ) |
| 48 | 17 47 | eqtrid | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) = 0 ) |
| 49 | 11 3 | mulcli | ⊢ ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ |
| 50 | 2 1 | hicli | ⊢ ( 𝐵 ·ih 𝐴 ) ∈ ℂ |
| 51 | 5 50 | mulcli | ⊢ ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ∈ ℂ |
| 52 | 49 51 | subeq0i | ⊢ ( ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) = 0 ↔ ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
| 53 | 48 52 | sylib | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
| 54 | 53 | eqcomd | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) ) |
| 55 | 1 2 | bcseqi | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) ↔ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
| 56 | 54 55 | sylib | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |