This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality case of Bunjakovaskij-Cauchy-Schwarz inequality. Specifically, in the equality case the two vectors are collinear. Compare bcsiHIL . (Contributed by NM, 16-Jul-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem7t.1 | ⊢ 𝐴 ∈ ℋ | |
| normlem7t.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | bcseqi | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) ↔ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem7t.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | normlem7t.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 2 2 | hicli | ⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
| 4 | 3 1 | hvmulcli | ⊢ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ∈ ℋ |
| 5 | 1 2 | hicli | ⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 6 | 5 2 | hvmulcli | ⊢ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ∈ ℋ |
| 7 | 4 6 4 6 | normlem9 | ⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) − ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ) |
| 8 | oveq1 | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ) | |
| 9 | 8 | eqcomd | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) ) |
| 10 | his5 | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) ) | |
| 11 | 3 4 1 10 | mp3an | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) |
| 12 | hiidrcl | ⊢ ( 𝐵 ∈ ℋ → ( 𝐵 ·ih 𝐵 ) ∈ ℝ ) | |
| 13 | cjre | ⊢ ( ( 𝐵 ·ih 𝐵 ) ∈ ℝ → ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) = ( 𝐵 ·ih 𝐵 ) ) | |
| 14 | 2 12 13 | mp2b | ⊢ ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) = ( 𝐵 ·ih 𝐵 ) |
| 15 | ax-his3 | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) | |
| 16 | 3 1 1 15 | mp3an | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) |
| 17 | 14 16 | oveq12i | ⊢ ( ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) |
| 18 | 1 1 | hicli | ⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℂ |
| 19 | 3 18 | mulcli | ⊢ ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ∈ ℂ |
| 20 | 3 19 | mulcomi | ⊢ ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) = ( ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
| 21 | 18 3 | mulcomi | ⊢ ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) |
| 22 | 21 | oveq1i | ⊢ ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
| 23 | 20 22 | eqtr4i | ⊢ ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
| 24 | 11 17 23 | 3eqtri | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
| 25 | his5 | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) · ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) ) ) | |
| 26 | 5 4 2 25 | mp3an | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) · ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) ) |
| 27 | 2 1 | his1i | ⊢ ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) |
| 28 | 27 | eqcomi | ⊢ ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = ( 𝐵 ·ih 𝐴 ) |
| 29 | ax-his3 | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) ) | |
| 30 | 3 1 2 29 | mp3an | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) |
| 31 | 28 30 | oveq12i | ⊢ ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) · ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) ) = ( ( 𝐵 ·ih 𝐴 ) · ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) ) |
| 32 | 2 1 | hicli | ⊢ ( 𝐵 ·ih 𝐴 ) ∈ ℂ |
| 33 | 3 5 | mulcli | ⊢ ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) ∈ ℂ |
| 34 | 32 33 | mulcomi | ⊢ ( ( 𝐵 ·ih 𝐴 ) · ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐴 ) ) |
| 35 | 3 5 32 | mulassi | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
| 36 | 5 32 | mulcli | ⊢ ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ∈ ℂ |
| 37 | 3 36 | mulcomi | ⊢ ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
| 38 | 34 35 37 | 3eqtri | ⊢ ( ( 𝐵 ·ih 𝐴 ) · ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
| 39 | 26 31 38 | 3eqtri | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
| 40 | 9 24 39 | 3eqtr4g | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) |
| 41 | ax-his3 | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) | |
| 42 | 5 2 1 41 | mp3an | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) |
| 43 | 14 42 | oveq12i | ⊢ ( ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
| 44 | his5 | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) ) | |
| 45 | 3 6 1 44 | mp3an | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) |
| 46 | his5 | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) · ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) ) | |
| 47 | 5 6 2 46 | mp3an | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) · ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) |
| 48 | ax-his3 | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) ) | |
| 49 | 5 2 2 48 | mp3an | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) |
| 50 | 28 49 | oveq12i | ⊢ ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) · ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) = ( ( 𝐵 ·ih 𝐴 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) ) |
| 51 | 5 3 | mulcli | ⊢ ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ |
| 52 | 32 51 | mulcomi | ⊢ ( ( 𝐵 ·ih 𝐴 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐴 ) ) |
| 53 | 5 3 32 | mul32i | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
| 54 | 36 3 | mulcomi | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
| 55 | 52 53 54 | 3eqtri | ⊢ ( ( 𝐵 ·ih 𝐴 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
| 56 | 47 50 55 | 3eqtri | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
| 57 | 43 45 56 | 3eqtr4ri | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |
| 58 | 57 | a1i | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |
| 59 | 40 58 | oveq12d | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ) |
| 60 | 59 | oveq1d | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) − ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ) = ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) − ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ) ) |
| 61 | 4 6 | hicli | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℂ |
| 62 | 6 4 | hicli | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ∈ ℂ |
| 63 | 61 62 | addcli | ⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ∈ ℂ |
| 64 | 63 | subidi | ⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) − ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ) = 0 |
| 65 | 60 64 | eqtrdi | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) − ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ) = 0 ) |
| 66 | 7 65 | eqtrid | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) |
| 67 | 4 6 | hvsubcli | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℋ |
| 68 | his6 | ⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℋ → ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ↔ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = 0ℎ ) ) | |
| 69 | 67 68 | ax-mp | ⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ↔ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = 0ℎ ) |
| 70 | 66 69 | sylib | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = 0ℎ ) |
| 71 | 4 6 | hvsubeq0i | ⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = 0ℎ ↔ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
| 72 | 70 71 | sylib | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
| 73 | oveq1 | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) | |
| 74 | 21 16 | eqtr4i | ⊢ ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) |
| 75 | 42 | eqcomi | ⊢ ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) |
| 76 | 73 74 75 | 3eqtr4g | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) → ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
| 77 | 76 | eqcomd | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) → ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) ) |
| 78 | 72 77 | impbii | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) ↔ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |