This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthogonality commutes. (Contributed by NM, 10-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orthcom | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = ( ∗ ‘ 0 ) ) | |
| 2 | cj0 | ⊢ ( ∗ ‘ 0 ) = 0 | |
| 3 | 1 2 | eqtrdi | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = 0 ) |
| 4 | ax-his1 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
| 6 | 5 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐵 ·ih 𝐴 ) = 0 ↔ ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = 0 ) ) |
| 7 | 3 6 | imbitrrid | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 → ( 𝐵 ·ih 𝐴 ) = 0 ) ) |
| 8 | fveq2 | ⊢ ( ( 𝐵 ·ih 𝐴 ) = 0 → ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) = ( ∗ ‘ 0 ) ) | |
| 9 | 8 2 | eqtrdi | ⊢ ( ( 𝐵 ·ih 𝐴 ) = 0 → ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) = 0 ) |
| 10 | ax-his1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) ) | |
| 11 | 10 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) = 0 ) ) |
| 12 | 9 11 | imbitrrid | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐵 ·ih 𝐴 ) = 0 → ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
| 13 | 7 12 | impbid | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) ) |