This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 17-Jul-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h1de2.1 | |- A e. ~H |
|
| h1de2.2 | |- B e. ~H |
||
| Assertion | h1de2i | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1de2.1 | |- A e. ~H |
|
| 2 | h1de2.2 | |- B e. ~H |
|
| 3 | 2 2 | hicli | |- ( B .ih B ) e. CC |
| 4 | 3 1 | hvmulcli | |- ( ( B .ih B ) .h A ) e. ~H |
| 5 | 1 2 | hicli | |- ( A .ih B ) e. CC |
| 6 | 5 2 | hvmulcli | |- ( ( A .ih B ) .h B ) e. ~H |
| 7 | his2sub | |- ( ( ( ( B .ih B ) .h A ) e. ~H /\ ( ( A .ih B ) .h B ) e. ~H /\ A e. ~H ) -> ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = ( ( ( ( B .ih B ) .h A ) .ih A ) - ( ( ( A .ih B ) .h B ) .ih A ) ) ) |
|
| 8 | 4 6 1 7 | mp3an | |- ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = ( ( ( ( B .ih B ) .h A ) .ih A ) - ( ( ( A .ih B ) .h B ) .ih A ) ) |
| 9 | ax-his3 | |- ( ( ( B .ih B ) e. CC /\ A e. ~H /\ A e. ~H ) -> ( ( ( B .ih B ) .h A ) .ih A ) = ( ( B .ih B ) x. ( A .ih A ) ) ) |
|
| 10 | 3 1 1 9 | mp3an | |- ( ( ( B .ih B ) .h A ) .ih A ) = ( ( B .ih B ) x. ( A .ih A ) ) |
| 11 | 1 1 | hicli | |- ( A .ih A ) e. CC |
| 12 | 3 11 | mulcomi | |- ( ( B .ih B ) x. ( A .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) |
| 13 | 10 12 | eqtri | |- ( ( ( B .ih B ) .h A ) .ih A ) = ( ( A .ih A ) x. ( B .ih B ) ) |
| 14 | ax-his3 | |- ( ( ( A .ih B ) e. CC /\ B e. ~H /\ A e. ~H ) -> ( ( ( A .ih B ) .h B ) .ih A ) = ( ( A .ih B ) x. ( B .ih A ) ) ) |
|
| 15 | 5 2 1 14 | mp3an | |- ( ( ( A .ih B ) .h B ) .ih A ) = ( ( A .ih B ) x. ( B .ih A ) ) |
| 16 | 13 15 | oveq12i | |- ( ( ( ( B .ih B ) .h A ) .ih A ) - ( ( ( A .ih B ) .h B ) .ih A ) ) = ( ( ( A .ih A ) x. ( B .ih B ) ) - ( ( A .ih B ) x. ( B .ih A ) ) ) |
| 17 | 8 16 | eqtr2i | |- ( ( ( A .ih A ) x. ( B .ih B ) ) - ( ( A .ih B ) x. ( B .ih A ) ) ) = ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) |
| 18 | his2sub | |- ( ( ( ( B .ih B ) .h A ) e. ~H /\ ( ( A .ih B ) .h B ) e. ~H /\ B e. ~H ) -> ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = ( ( ( ( B .ih B ) .h A ) .ih B ) - ( ( ( A .ih B ) .h B ) .ih B ) ) ) |
|
| 19 | 4 6 2 18 | mp3an | |- ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = ( ( ( ( B .ih B ) .h A ) .ih B ) - ( ( ( A .ih B ) .h B ) .ih B ) ) |
| 20 | 3 5 | mulcomi | |- ( ( B .ih B ) x. ( A .ih B ) ) = ( ( A .ih B ) x. ( B .ih B ) ) |
| 21 | ax-his3 | |- ( ( ( B .ih B ) e. CC /\ A e. ~H /\ B e. ~H ) -> ( ( ( B .ih B ) .h A ) .ih B ) = ( ( B .ih B ) x. ( A .ih B ) ) ) |
|
| 22 | 3 1 2 21 | mp3an | |- ( ( ( B .ih B ) .h A ) .ih B ) = ( ( B .ih B ) x. ( A .ih B ) ) |
| 23 | ax-his3 | |- ( ( ( A .ih B ) e. CC /\ B e. ~H /\ B e. ~H ) -> ( ( ( A .ih B ) .h B ) .ih B ) = ( ( A .ih B ) x. ( B .ih B ) ) ) |
|
| 24 | 5 2 2 23 | mp3an | |- ( ( ( A .ih B ) .h B ) .ih B ) = ( ( A .ih B ) x. ( B .ih B ) ) |
| 25 | 20 22 24 | 3eqtr4i | |- ( ( ( B .ih B ) .h A ) .ih B ) = ( ( ( A .ih B ) .h B ) .ih B ) |
| 26 | 4 2 | hicli | |- ( ( ( B .ih B ) .h A ) .ih B ) e. CC |
| 27 | 6 2 | hicli | |- ( ( ( A .ih B ) .h B ) .ih B ) e. CC |
| 28 | 26 27 | subeq0i | |- ( ( ( ( ( B .ih B ) .h A ) .ih B ) - ( ( ( A .ih B ) .h B ) .ih B ) ) = 0 <-> ( ( ( B .ih B ) .h A ) .ih B ) = ( ( ( A .ih B ) .h B ) .ih B ) ) |
| 29 | 25 28 | mpbir | |- ( ( ( ( B .ih B ) .h A ) .ih B ) - ( ( ( A .ih B ) .h B ) .ih B ) ) = 0 |
| 30 | 19 29 | eqtri | |- ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = 0 |
| 31 | 2 | h1dei | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( A e. ~H /\ A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) ) |
| 32 | 1 31 | mpbiran | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) |
| 33 | 4 6 | hvsubcli | |- ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H |
| 34 | oveq2 | |- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( B .ih x ) = ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) ) |
|
| 35 | 34 | eqeq1d | |- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( ( B .ih x ) = 0 <-> ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
| 36 | oveq2 | |- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( A .ih x ) = ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) ) |
|
| 37 | 36 | eqeq1d | |- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( ( A .ih x ) = 0 <-> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
| 38 | 35 37 | imbi12d | |- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) <-> ( ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 -> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) ) |
| 39 | 38 | rspcv | |- ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H -> ( A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) -> ( ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 -> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) ) |
| 40 | 33 39 | ax-mp | |- ( A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) -> ( ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 -> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
| 41 | 32 40 | sylbi | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 -> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
| 42 | orthcom | |- ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H /\ B e. ~H ) -> ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = 0 <-> ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
|
| 43 | 33 2 42 | mp2an | |- ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = 0 <-> ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) |
| 44 | orthcom | |- ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H /\ A e. ~H ) -> ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = 0 <-> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
|
| 45 | 33 1 44 | mp2an | |- ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = 0 <-> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) |
| 46 | 41 43 45 | 3imtr4g | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = 0 -> ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = 0 ) ) |
| 47 | 30 46 | mpi | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = 0 ) |
| 48 | 17 47 | eqtrid | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( ( A .ih A ) x. ( B .ih B ) ) - ( ( A .ih B ) x. ( B .ih A ) ) ) = 0 ) |
| 49 | 11 3 | mulcli | |- ( ( A .ih A ) x. ( B .ih B ) ) e. CC |
| 50 | 2 1 | hicli | |- ( B .ih A ) e. CC |
| 51 | 5 50 | mulcli | |- ( ( A .ih B ) x. ( B .ih A ) ) e. CC |
| 52 | 49 51 | subeq0i | |- ( ( ( ( A .ih A ) x. ( B .ih B ) ) - ( ( A .ih B ) x. ( B .ih A ) ) ) = 0 <-> ( ( A .ih A ) x. ( B .ih B ) ) = ( ( A .ih B ) x. ( B .ih A ) ) ) |
| 53 | 48 52 | sylib | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( A .ih A ) x. ( B .ih B ) ) = ( ( A .ih B ) x. ( B .ih A ) ) ) |
| 54 | 53 | eqcomd | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) ) |
| 55 | 1 2 | bcseqi | |- ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) <-> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) ) |
| 56 | 54 55 | sylib | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) ) |