This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in 1-dimensional subspace. (Contributed by NM, 7-Jul-2001) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | h1deot.1 | ⊢ 𝐵 ∈ ℋ | |
| Assertion | h1dei | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1deot.1 | ⊢ 𝐵 ∈ ℋ | |
| 2 | snssi | ⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) | |
| 3 | occl | ⊢ ( { 𝐵 } ⊆ ℋ → ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ |
| 5 | 4 | chssii | ⊢ ( ⊥ ‘ { 𝐵 } ) ⊆ ℋ |
| 6 | ocel | ⊢ ( ( ⊥ ‘ { 𝐵 } ) ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
| 8 | 1 | h1deoi | ⊢ ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑥 ·ih 𝐵 ) = 0 ) ) |
| 9 | orthcom | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝑥 ) = 0 ) ) | |
| 10 | 1 9 | mpan2 | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑥 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝑥 ) = 0 ) ) |
| 11 | 10 | pm5.32i | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑥 ·ih 𝐵 ) = 0 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) ) |
| 12 | 8 11 | bitri | ⊢ ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) ) |
| 13 | 12 | imbi1i | ⊢ ( ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
| 14 | impexp | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ ℋ → ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) | |
| 15 | 13 14 | bitri | ⊢ ( ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ ℋ → ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
| 16 | 15 | ralbii2 | ⊢ ( ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
| 17 | 16 | anbi2i | ⊢ ( ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
| 18 | 7 17 | bitri | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |