This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 19-Jul-2001) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h1de2.1 | |- A e. ~H |
|
| h1de2.2 | |- B e. ~H |
||
| Assertion | h1de2bi | |- ( B =/= 0h -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1de2.1 | |- A e. ~H |
|
| 2 | h1de2.2 | |- B e. ~H |
|
| 3 | his6 | |- ( B e. ~H -> ( ( B .ih B ) = 0 <-> B = 0h ) ) |
|
| 4 | 2 3 | ax-mp | |- ( ( B .ih B ) = 0 <-> B = 0h ) |
| 5 | 4 | necon3bii | |- ( ( B .ih B ) =/= 0 <-> B =/= 0h ) |
| 6 | 1 2 | h1de2i | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) ) |
| 7 | 6 | adantl | |- ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) ) |
| 8 | 7 | oveq2d | |- ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) = ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) ) |
| 9 | 2 2 | hicli | |- ( B .ih B ) e. CC |
| 10 | 9 | recclzi | |- ( ( B .ih B ) =/= 0 -> ( 1 / ( B .ih B ) ) e. CC ) |
| 11 | ax-hvmulass | |- ( ( ( 1 / ( B .ih B ) ) e. CC /\ ( B .ih B ) e. CC /\ A e. ~H ) -> ( ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) .h A ) = ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) ) |
|
| 12 | 9 1 11 | mp3an23 | |- ( ( 1 / ( B .ih B ) ) e. CC -> ( ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) .h A ) = ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) ) |
| 13 | 10 12 | syl | |- ( ( B .ih B ) =/= 0 -> ( ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) .h A ) = ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) ) |
| 14 | ax-1cn | |- 1 e. CC |
|
| 15 | 14 9 | divcan1zi | |- ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) = 1 ) |
| 16 | 15 | oveq1d | |- ( ( B .ih B ) =/= 0 -> ( ( ( 1 / ( B .ih B ) ) x. ( B .ih B ) ) .h A ) = ( 1 .h A ) ) |
| 17 | 13 16 | eqtr3d | |- ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) = ( 1 .h A ) ) |
| 18 | ax-hvmulid | |- ( A e. ~H -> ( 1 .h A ) = A ) |
|
| 19 | 1 18 | ax-mp | |- ( 1 .h A ) = A |
| 20 | 17 19 | eqtrdi | |- ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) = A ) |
| 21 | 20 | adantr | |- ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( 1 / ( B .ih B ) ) .h ( ( B .ih B ) .h A ) ) = A ) |
| 22 | 8 21 | eqtr3d | |- ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) = A ) |
| 23 | 1 2 | hicli | |- ( A .ih B ) e. CC |
| 24 | ax-hvmulass | |- ( ( ( 1 / ( B .ih B ) ) e. CC /\ ( A .ih B ) e. CC /\ B e. ~H ) -> ( ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) .h B ) = ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) ) |
|
| 25 | 23 2 24 | mp3an23 | |- ( ( 1 / ( B .ih B ) ) e. CC -> ( ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) .h B ) = ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) ) |
| 26 | 10 25 | syl | |- ( ( B .ih B ) =/= 0 -> ( ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) .h B ) = ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) ) |
| 27 | mulcom | |- ( ( ( 1 / ( B .ih B ) ) e. CC /\ ( A .ih B ) e. CC ) -> ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) = ( ( A .ih B ) x. ( 1 / ( B .ih B ) ) ) ) |
|
| 28 | 10 23 27 | sylancl | |- ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) = ( ( A .ih B ) x. ( 1 / ( B .ih B ) ) ) ) |
| 29 | 23 9 | divreczi | |- ( ( B .ih B ) =/= 0 -> ( ( A .ih B ) / ( B .ih B ) ) = ( ( A .ih B ) x. ( 1 / ( B .ih B ) ) ) ) |
| 30 | 28 29 | eqtr4d | |- ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) = ( ( A .ih B ) / ( B .ih B ) ) ) |
| 31 | 30 | oveq1d | |- ( ( B .ih B ) =/= 0 -> ( ( ( 1 / ( B .ih B ) ) x. ( A .ih B ) ) .h B ) = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) |
| 32 | 26 31 | eqtr3d | |- ( ( B .ih B ) =/= 0 -> ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) |
| 33 | 32 | adantr | |- ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( 1 / ( B .ih B ) ) .h ( ( A .ih B ) .h B ) ) = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) |
| 34 | 22 33 | eqtr3d | |- ( ( ( B .ih B ) =/= 0 /\ A e. ( _|_ ` ( _|_ ` { B } ) ) ) -> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) |
| 35 | 34 | ex | |- ( ( B .ih B ) =/= 0 -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) ) |
| 36 | 23 9 | divclzi | |- ( ( B .ih B ) =/= 0 -> ( ( A .ih B ) / ( B .ih B ) ) e. CC ) |
| 37 | 2 | elexi | |- B e. _V |
| 38 | 37 | snss | |- ( B e. ~H <-> { B } C_ ~H ) |
| 39 | 2 38 | mpbi | |- { B } C_ ~H |
| 40 | occl | |- ( { B } C_ ~H -> ( _|_ ` { B } ) e. CH ) |
|
| 41 | 39 40 | ax-mp | |- ( _|_ ` { B } ) e. CH |
| 42 | 41 | choccli | |- ( _|_ ` ( _|_ ` { B } ) ) e. CH |
| 43 | 42 | chshii | |- ( _|_ ` ( _|_ ` { B } ) ) e. SH |
| 44 | h1did | |- ( B e. ~H -> B e. ( _|_ ` ( _|_ ` { B } ) ) ) |
|
| 45 | 2 44 | ax-mp | |- B e. ( _|_ ` ( _|_ ` { B } ) ) |
| 46 | shmulcl | |- ( ( ( _|_ ` ( _|_ ` { B } ) ) e. SH /\ ( ( A .ih B ) / ( B .ih B ) ) e. CC /\ B e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) |
|
| 47 | 43 45 46 | mp3an13 | |- ( ( ( A .ih B ) / ( B .ih B ) ) e. CC -> ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) |
| 48 | 36 47 | syl | |- ( ( B .ih B ) =/= 0 -> ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) |
| 49 | eleq1 | |- ( A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) ) |
|
| 50 | 48 49 | syl5ibrcom | |- ( ( B .ih B ) =/= 0 -> ( A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) -> A e. ( _|_ ` ( _|_ ` { B } ) ) ) ) |
| 51 | 35 50 | impbid | |- ( ( B .ih B ) =/= 0 -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) ) |
| 52 | 5 51 | sylbir | |- ( B =/= 0h -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) ) |