This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The squared norm of a gaussian integer is an integer. (Contributed by Mario Carneiro, 16-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gzabssqcl | ⊢ ( 𝐴 ∈ ℤ[i] → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gzcn | ⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) | |
| 2 | 1 | absvalsq2d | ⊢ ( 𝐴 ∈ ℤ[i] → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 3 | elgz | ⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) | |
| 4 | 3 | simp2bi | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ 𝐴 ) ∈ ℤ ) |
| 5 | zsqcl2 | ⊢ ( ( ℜ ‘ 𝐴 ) ∈ ℤ → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℤ[i] → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) |
| 7 | 3 | simp3bi | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
| 8 | zsqcl2 | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℤ → ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐴 ∈ ℤ[i] → ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) |
| 10 | 6 9 | nn0addcld | ⊢ ( 𝐴 ∈ ℤ[i] → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ∈ ℕ0 ) |
| 11 | 2 10 | eqeltrd | ⊢ ( 𝐴 ∈ ℤ[i] → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) |