This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand out the substitutions in df-gsum . (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval.b | |- B = ( Base ` G ) |
|
| gsumval.z | |- .0. = ( 0g ` G ) |
||
| gsumval.p | |- .+ = ( +g ` G ) |
||
| gsumval.o | |- O = { s e. B | A. t e. B ( ( s .+ t ) = t /\ ( t .+ s ) = t ) } |
||
| gsumval.w | |- ( ph -> W = ( `' F " ( _V \ O ) ) ) |
||
| gsumval.g | |- ( ph -> G e. V ) |
||
| gsumvalx.f | |- ( ph -> F e. X ) |
||
| gsumvalx.a | |- ( ph -> dom F = A ) |
||
| Assertion | gsumvalx | |- ( ph -> ( G gsum F ) = if ( ran F C_ O , .0. , if ( A e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval.b | |- B = ( Base ` G ) |
|
| 2 | gsumval.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsumval.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumval.o | |- O = { s e. B | A. t e. B ( ( s .+ t ) = t /\ ( t .+ s ) = t ) } |
|
| 5 | gsumval.w | |- ( ph -> W = ( `' F " ( _V \ O ) ) ) |
|
| 6 | gsumval.g | |- ( ph -> G e. V ) |
|
| 7 | gsumvalx.f | |- ( ph -> F e. X ) |
|
| 8 | gsumvalx.a | |- ( ph -> dom F = A ) |
|
| 9 | df-gsum | |- gsum = ( w e. _V , g e. _V |-> [_ { x e. ( Base ` w ) | A. y e. ( Base ` w ) ( ( x ( +g ` w ) y ) = y /\ ( y ( +g ` w ) x ) = y ) } / o ]_ if ( ran g C_ o , ( 0g ` w ) , if ( dom g e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom g = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , g ) ` n ) ) ) , ( iota x E. f [. ( `' g " ( _V \ o ) ) / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) ) ) ) ) |
|
| 10 | 9 | a1i | |- ( ph -> gsum = ( w e. _V , g e. _V |-> [_ { x e. ( Base ` w ) | A. y e. ( Base ` w ) ( ( x ( +g ` w ) y ) = y /\ ( y ( +g ` w ) x ) = y ) } / o ]_ if ( ran g C_ o , ( 0g ` w ) , if ( dom g e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom g = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , g ) ` n ) ) ) , ( iota x E. f [. ( `' g " ( _V \ o ) ) / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) ) ) ) ) ) |
| 11 | simprl | |- ( ( ph /\ ( w = G /\ g = F ) ) -> w = G ) |
|
| 12 | 11 | fveq2d | |- ( ( ph /\ ( w = G /\ g = F ) ) -> ( Base ` w ) = ( Base ` G ) ) |
| 13 | 12 1 | eqtr4di | |- ( ( ph /\ ( w = G /\ g = F ) ) -> ( Base ` w ) = B ) |
| 14 | 11 | fveq2d | |- ( ( ph /\ ( w = G /\ g = F ) ) -> ( +g ` w ) = ( +g ` G ) ) |
| 15 | 14 3 | eqtr4di | |- ( ( ph /\ ( w = G /\ g = F ) ) -> ( +g ` w ) = .+ ) |
| 16 | 15 | oveqd | |- ( ( ph /\ ( w = G /\ g = F ) ) -> ( x ( +g ` w ) y ) = ( x .+ y ) ) |
| 17 | 16 | eqeq1d | |- ( ( ph /\ ( w = G /\ g = F ) ) -> ( ( x ( +g ` w ) y ) = y <-> ( x .+ y ) = y ) ) |
| 18 | 15 | oveqd | |- ( ( ph /\ ( w = G /\ g = F ) ) -> ( y ( +g ` w ) x ) = ( y .+ x ) ) |
| 19 | 18 | eqeq1d | |- ( ( ph /\ ( w = G /\ g = F ) ) -> ( ( y ( +g ` w ) x ) = y <-> ( y .+ x ) = y ) ) |
| 20 | 17 19 | anbi12d | |- ( ( ph /\ ( w = G /\ g = F ) ) -> ( ( ( x ( +g ` w ) y ) = y /\ ( y ( +g ` w ) x ) = y ) <-> ( ( x .+ y ) = y /\ ( y .+ x ) = y ) ) ) |
| 21 | 13 20 | raleqbidv | |- ( ( ph /\ ( w = G /\ g = F ) ) -> ( A. y e. ( Base ` w ) ( ( x ( +g ` w ) y ) = y /\ ( y ( +g ` w ) x ) = y ) <-> A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) ) ) |
| 22 | 13 21 | rabeqbidv | |- ( ( ph /\ ( w = G /\ g = F ) ) -> { x e. ( Base ` w ) | A. y e. ( Base ` w ) ( ( x ( +g ` w ) y ) = y /\ ( y ( +g ` w ) x ) = y ) } = { x e. B | A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) } ) |
| 23 | oveq2 | |- ( t = y -> ( s .+ t ) = ( s .+ y ) ) |
|
| 24 | id | |- ( t = y -> t = y ) |
|
| 25 | 23 24 | eqeq12d | |- ( t = y -> ( ( s .+ t ) = t <-> ( s .+ y ) = y ) ) |
| 26 | oveq1 | |- ( t = y -> ( t .+ s ) = ( y .+ s ) ) |
|
| 27 | 26 24 | eqeq12d | |- ( t = y -> ( ( t .+ s ) = t <-> ( y .+ s ) = y ) ) |
| 28 | 25 27 | anbi12d | |- ( t = y -> ( ( ( s .+ t ) = t /\ ( t .+ s ) = t ) <-> ( ( s .+ y ) = y /\ ( y .+ s ) = y ) ) ) |
| 29 | 28 | cbvralvw | |- ( A. t e. B ( ( s .+ t ) = t /\ ( t .+ s ) = t ) <-> A. y e. B ( ( s .+ y ) = y /\ ( y .+ s ) = y ) ) |
| 30 | oveq1 | |- ( s = x -> ( s .+ y ) = ( x .+ y ) ) |
|
| 31 | 30 | eqeq1d | |- ( s = x -> ( ( s .+ y ) = y <-> ( x .+ y ) = y ) ) |
| 32 | 31 | ovanraleqv | |- ( s = x -> ( A. y e. B ( ( s .+ y ) = y /\ ( y .+ s ) = y ) <-> A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) ) ) |
| 33 | 29 32 | bitrid | |- ( s = x -> ( A. t e. B ( ( s .+ t ) = t /\ ( t .+ s ) = t ) <-> A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) ) ) |
| 34 | 33 | cbvrabv | |- { s e. B | A. t e. B ( ( s .+ t ) = t /\ ( t .+ s ) = t ) } = { x e. B | A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) } |
| 35 | 4 34 | eqtri | |- O = { x e. B | A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) } |
| 36 | 22 35 | eqtr4di | |- ( ( ph /\ ( w = G /\ g = F ) ) -> { x e. ( Base ` w ) | A. y e. ( Base ` w ) ( ( x ( +g ` w ) y ) = y /\ ( y ( +g ` w ) x ) = y ) } = O ) |
| 37 | 36 | csbeq1d | |- ( ( ph /\ ( w = G /\ g = F ) ) -> [_ { x e. ( Base ` w ) | A. y e. ( Base ` w ) ( ( x ( +g ` w ) y ) = y /\ ( y ( +g ` w ) x ) = y ) } / o ]_ if ( ran g C_ o , ( 0g ` w ) , if ( dom g e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom g = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , g ) ` n ) ) ) , ( iota x E. f [. ( `' g " ( _V \ o ) ) / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) ) ) ) = [_ O / o ]_ if ( ran g C_ o , ( 0g ` w ) , if ( dom g e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom g = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , g ) ` n ) ) ) , ( iota x E. f [. ( `' g " ( _V \ o ) ) / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) ) ) ) ) |
| 38 | 1 | fvexi | |- B e. _V |
| 39 | 4 38 | rabex2 | |- O e. _V |
| 40 | 39 | a1i | |- ( ( ph /\ ( w = G /\ g = F ) ) -> O e. _V ) |
| 41 | simplrr | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> g = F ) |
|
| 42 | 41 | rneqd | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ran g = ran F ) |
| 43 | simpr | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> o = O ) |
|
| 44 | 42 43 | sseq12d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( ran g C_ o <-> ran F C_ O ) ) |
| 45 | 11 | adantr | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> w = G ) |
| 46 | 45 | fveq2d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( 0g ` w ) = ( 0g ` G ) ) |
| 47 | 46 2 | eqtr4di | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( 0g ` w ) = .0. ) |
| 48 | 41 | dmeqd | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> dom g = dom F ) |
| 49 | 8 | ad2antrr | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> dom F = A ) |
| 50 | 48 49 | eqtrd | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> dom g = A ) |
| 51 | 50 | eleq1d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( dom g e. ran ... <-> A e. ran ... ) ) |
| 52 | 50 | eqeq1d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( dom g = ( m ... n ) <-> A = ( m ... n ) ) ) |
| 53 | 15 | adantr | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( +g ` w ) = .+ ) |
| 54 | 53 | seqeq2d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> seq m ( ( +g ` w ) , g ) = seq m ( .+ , g ) ) |
| 55 | 41 | seqeq3d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> seq m ( .+ , g ) = seq m ( .+ , F ) ) |
| 56 | 54 55 | eqtrd | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> seq m ( ( +g ` w ) , g ) = seq m ( .+ , F ) ) |
| 57 | 56 | fveq1d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( seq m ( ( +g ` w ) , g ) ` n ) = ( seq m ( .+ , F ) ` n ) ) |
| 58 | 57 | eqeq2d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( x = ( seq m ( ( +g ` w ) , g ) ` n ) <-> x = ( seq m ( .+ , F ) ` n ) ) ) |
| 59 | 52 58 | anbi12d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( ( dom g = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , g ) ` n ) ) <-> ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) ) |
| 60 | 59 | rexbidv | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( E. n e. ( ZZ>= ` m ) ( dom g = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , g ) ` n ) ) <-> E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) ) |
| 61 | 60 | exbidv | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( E. m E. n e. ( ZZ>= ` m ) ( dom g = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , g ) ` n ) ) <-> E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) ) |
| 62 | 61 | iotabidv | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom g = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , g ) ` n ) ) ) = ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) ) |
| 63 | 43 | difeq2d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( _V \ o ) = ( _V \ O ) ) |
| 64 | 63 | imaeq2d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( `' F " ( _V \ o ) ) = ( `' F " ( _V \ O ) ) ) |
| 65 | 41 | cnveqd | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> `' g = `' F ) |
| 66 | 65 | imaeq1d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( `' g " ( _V \ o ) ) = ( `' F " ( _V \ o ) ) ) |
| 67 | 5 | ad2antrr | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> W = ( `' F " ( _V \ O ) ) ) |
| 68 | 64 66 67 | 3eqtr4d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( `' g " ( _V \ o ) ) = W ) |
| 69 | 68 | sbceq1d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( [. ( `' g " ( _V \ o ) ) / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) <-> [. W / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) ) ) |
| 70 | cnvexg | |- ( F e. X -> `' F e. _V ) |
|
| 71 | imaexg | |- ( `' F e. _V -> ( `' F " ( _V \ O ) ) e. _V ) |
|
| 72 | 7 70 71 | 3syl | |- ( ph -> ( `' F " ( _V \ O ) ) e. _V ) |
| 73 | 5 72 | eqeltrd | |- ( ph -> W e. _V ) |
| 74 | 73 | ad2antrr | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> W e. _V ) |
| 75 | fveq2 | |- ( y = W -> ( # ` y ) = ( # ` W ) ) |
|
| 76 | 75 | adantl | |- ( ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) /\ y = W ) -> ( # ` y ) = ( # ` W ) ) |
| 77 | 76 | oveq2d | |- ( ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) /\ y = W ) -> ( 1 ... ( # ` y ) ) = ( 1 ... ( # ` W ) ) ) |
| 78 | 77 | f1oeq2d | |- ( ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) /\ y = W ) -> ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y <-> f : ( 1 ... ( # ` W ) ) -1-1-onto-> y ) ) |
| 79 | f1oeq3 | |- ( y = W -> ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> y <-> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) |
|
| 80 | 79 | adantl | |- ( ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) /\ y = W ) -> ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> y <-> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) |
| 81 | 78 80 | bitrd | |- ( ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) /\ y = W ) -> ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y <-> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) |
| 82 | 53 | seqeq2d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> seq 1 ( ( +g ` w ) , ( g o. f ) ) = seq 1 ( .+ , ( g o. f ) ) ) |
| 83 | 41 | coeq1d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( g o. f ) = ( F o. f ) ) |
| 84 | 83 | seqeq3d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> seq 1 ( .+ , ( g o. f ) ) = seq 1 ( .+ , ( F o. f ) ) ) |
| 85 | 82 84 | eqtrd | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> seq 1 ( ( +g ` w ) , ( g o. f ) ) = seq 1 ( .+ , ( F o. f ) ) ) |
| 86 | 85 | adantr | |- ( ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) /\ y = W ) -> seq 1 ( ( +g ` w ) , ( g o. f ) ) = seq 1 ( .+ , ( F o. f ) ) ) |
| 87 | 86 76 | fveq12d | |- ( ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) /\ y = W ) -> ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) |
| 88 | 87 | eqeq2d | |- ( ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) /\ y = W ) -> ( x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) <-> x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) |
| 89 | 81 88 | anbi12d | |- ( ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) /\ y = W ) -> ( ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) <-> ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) |
| 90 | 74 89 | sbcied | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( [. W / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) <-> ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) |
| 91 | 69 90 | bitrd | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( [. ( `' g " ( _V \ o ) ) / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) <-> ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) |
| 92 | 91 | exbidv | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( E. f [. ( `' g " ( _V \ o ) ) / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) <-> E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) |
| 93 | 92 | iotabidv | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> ( iota x E. f [. ( `' g " ( _V \ o ) ) / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) ) = ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) |
| 94 | 51 62 93 | ifbieq12d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> if ( dom g e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom g = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , g ) ` n ) ) ) , ( iota x E. f [. ( `' g " ( _V \ o ) ) / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) ) ) = if ( A e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) ) |
| 95 | 44 47 94 | ifbieq12d | |- ( ( ( ph /\ ( w = G /\ g = F ) ) /\ o = O ) -> if ( ran g C_ o , ( 0g ` w ) , if ( dom g e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom g = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , g ) ` n ) ) ) , ( iota x E. f [. ( `' g " ( _V \ o ) ) / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) ) ) ) = if ( ran F C_ O , .0. , if ( A e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) ) ) |
| 96 | 40 95 | csbied | |- ( ( ph /\ ( w = G /\ g = F ) ) -> [_ O / o ]_ if ( ran g C_ o , ( 0g ` w ) , if ( dom g e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom g = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , g ) ` n ) ) ) , ( iota x E. f [. ( `' g " ( _V \ o ) ) / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) ) ) ) = if ( ran F C_ O , .0. , if ( A e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) ) ) |
| 97 | 37 96 | eqtrd | |- ( ( ph /\ ( w = G /\ g = F ) ) -> [_ { x e. ( Base ` w ) | A. y e. ( Base ` w ) ( ( x ( +g ` w ) y ) = y /\ ( y ( +g ` w ) x ) = y ) } / o ]_ if ( ran g C_ o , ( 0g ` w ) , if ( dom g e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom g = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , g ) ` n ) ) ) , ( iota x E. f [. ( `' g " ( _V \ o ) ) / y ]. ( f : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( g o. f ) ) ` ( # ` y ) ) ) ) ) ) = if ( ran F C_ O , .0. , if ( A e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) ) ) |
| 98 | 6 | elexd | |- ( ph -> G e. _V ) |
| 99 | 7 | elexd | |- ( ph -> F e. _V ) |
| 100 | 2 | fvexi | |- .0. e. _V |
| 101 | iotaex | |- ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) e. _V |
|
| 102 | iotaex | |- ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) e. _V |
|
| 103 | 101 102 | ifex | |- if ( A e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) e. _V |
| 104 | 100 103 | ifex | |- if ( ran F C_ O , .0. , if ( A e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) ) e. _V |
| 105 | 104 | a1i | |- ( ph -> if ( ran F C_ O , .0. , if ( A e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) ) e. _V ) |
| 106 | 10 97 98 99 105 | ovmpod | |- ( ph -> ( G gsum F ) = if ( ran F C_ O , .0. , if ( A e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) ) ) |