This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsub.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumsub.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumsub.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| gsumsub.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| gsumsub.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumsub.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumsub.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) | ||
| gsumsub.fn | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| gsumsub.hn | ⊢ ( 𝜑 → 𝐻 finSupp 0 ) | ||
| Assertion | gsumsub | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsub.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumsub.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumsub.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | gsumsub.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 5 | gsumsub.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsumsub.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | gsumsub.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 8 | gsumsub.fn | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 9 | gsumsub.hn | ⊢ ( 𝜑 → 𝐻 finSupp 0 ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 11 | ablcmn | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 13 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 14 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 15 | 4 14 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 16 | 1 13 15 | grpinvf1o | ⊢ ( 𝜑 → ( invg ‘ 𝐺 ) : 𝐵 –1-1-onto→ 𝐵 ) |
| 17 | f1of | ⊢ ( ( invg ‘ 𝐺 ) : 𝐵 –1-1-onto→ 𝐵 → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
| 19 | fco | ⊢ ( ( ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ) → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) : 𝐴 ⟶ 𝐵 ) | |
| 20 | 18 7 19 | syl2anc | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) : 𝐴 ⟶ 𝐵 ) |
| 21 | 2 | fvexi | ⊢ 0 ∈ V |
| 22 | 21 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 23 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 24 | 23 | a1i | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 25 | 2 13 | grpinvid | ⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 26 | 15 25 | syl | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 27 | 22 7 18 5 24 9 26 | fsuppco2 | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) finSupp 0 ) |
| 28 | 1 2 10 12 5 6 20 8 27 | gsumadd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
| 29 | 1 2 13 4 5 7 9 | gsuminv | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) |
| 30 | 29 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
| 31 | 28 30 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
| 32 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 33 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝐵 ) |
| 34 | 1 10 13 3 | grpsubval | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑘 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 35 | 32 33 34 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 36 | 35 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 37 | 6 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 38 | 7 | feqmptd | ⊢ ( 𝜑 → 𝐻 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑘 ) ) ) |
| 39 | 5 32 33 37 38 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 40 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ∈ V ) | |
| 41 | 18 | feqmptd | ⊢ ( 𝜑 → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 42 | fveq2 | ⊢ ( 𝑥 = ( 𝐻 ‘ 𝑘 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) | |
| 43 | 33 38 41 42 | fmptco | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 44 | 5 32 40 37 43 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 45 | 36 39 44 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) |
| 46 | 45 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) = ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
| 47 | 1 2 12 5 6 8 | gsumcl | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |
| 48 | 1 2 12 5 7 9 | gsumcl | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ 𝐵 ) |
| 49 | 1 10 13 3 | grpsubval | ⊢ ( ( ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ∧ ( 𝐺 Σg 𝐻 ) ∈ 𝐵 ) → ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
| 50 | 47 48 49 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
| 51 | 31 46 50 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) |