This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsub.b | |- B = ( Base ` G ) |
|
| gsumsub.z | |- .0. = ( 0g ` G ) |
||
| gsumsub.m | |- .- = ( -g ` G ) |
||
| gsumsub.g | |- ( ph -> G e. Abel ) |
||
| gsumsub.a | |- ( ph -> A e. V ) |
||
| gsumsub.f | |- ( ph -> F : A --> B ) |
||
| gsumsub.h | |- ( ph -> H : A --> B ) |
||
| gsumsub.fn | |- ( ph -> F finSupp .0. ) |
||
| gsumsub.hn | |- ( ph -> H finSupp .0. ) |
||
| Assertion | gsumsub | |- ( ph -> ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsub.b | |- B = ( Base ` G ) |
|
| 2 | gsumsub.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsumsub.m | |- .- = ( -g ` G ) |
|
| 4 | gsumsub.g | |- ( ph -> G e. Abel ) |
|
| 5 | gsumsub.a | |- ( ph -> A e. V ) |
|
| 6 | gsumsub.f | |- ( ph -> F : A --> B ) |
|
| 7 | gsumsub.h | |- ( ph -> H : A --> B ) |
|
| 8 | gsumsub.fn | |- ( ph -> F finSupp .0. ) |
|
| 9 | gsumsub.hn | |- ( ph -> H finSupp .0. ) |
|
| 10 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 11 | ablcmn | |- ( G e. Abel -> G e. CMnd ) |
|
| 12 | 4 11 | syl | |- ( ph -> G e. CMnd ) |
| 13 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 14 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 15 | 4 14 | syl | |- ( ph -> G e. Grp ) |
| 16 | 1 13 15 | grpinvf1o | |- ( ph -> ( invg ` G ) : B -1-1-onto-> B ) |
| 17 | f1of | |- ( ( invg ` G ) : B -1-1-onto-> B -> ( invg ` G ) : B --> B ) |
|
| 18 | 16 17 | syl | |- ( ph -> ( invg ` G ) : B --> B ) |
| 19 | fco | |- ( ( ( invg ` G ) : B --> B /\ H : A --> B ) -> ( ( invg ` G ) o. H ) : A --> B ) |
|
| 20 | 18 7 19 | syl2anc | |- ( ph -> ( ( invg ` G ) o. H ) : A --> B ) |
| 21 | 2 | fvexi | |- .0. e. _V |
| 22 | 21 | a1i | |- ( ph -> .0. e. _V ) |
| 23 | 1 | fvexi | |- B e. _V |
| 24 | 23 | a1i | |- ( ph -> B e. _V ) |
| 25 | 2 13 | grpinvid | |- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 26 | 15 25 | syl | |- ( ph -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 27 | 22 7 18 5 24 9 26 | fsuppco2 | |- ( ph -> ( ( invg ` G ) o. H ) finSupp .0. ) |
| 28 | 1 2 10 12 5 6 20 8 27 | gsumadd | |- ( ph -> ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) ) |
| 29 | 1 2 13 4 5 7 9 | gsuminv | |- ( ph -> ( G gsum ( ( invg ` G ) o. H ) ) = ( ( invg ` G ) ` ( G gsum H ) ) ) |
| 30 | 29 | oveq2d | |- ( ph -> ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
| 31 | 28 30 | eqtrd | |- ( ph -> ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
| 32 | 6 | ffvelcdmda | |- ( ( ph /\ k e. A ) -> ( F ` k ) e. B ) |
| 33 | 7 | ffvelcdmda | |- ( ( ph /\ k e. A ) -> ( H ` k ) e. B ) |
| 34 | 1 10 13 3 | grpsubval | |- ( ( ( F ` k ) e. B /\ ( H ` k ) e. B ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) |
| 35 | 32 33 34 | syl2anc | |- ( ( ph /\ k e. A ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) |
| 36 | 35 | mpteq2dva | |- ( ph -> ( k e. A |-> ( ( F ` k ) .- ( H ` k ) ) ) = ( k e. A |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) ) |
| 37 | 6 | feqmptd | |- ( ph -> F = ( k e. A |-> ( F ` k ) ) ) |
| 38 | 7 | feqmptd | |- ( ph -> H = ( k e. A |-> ( H ` k ) ) ) |
| 39 | 5 32 33 37 38 | offval2 | |- ( ph -> ( F oF .- H ) = ( k e. A |-> ( ( F ` k ) .- ( H ` k ) ) ) ) |
| 40 | fvexd | |- ( ( ph /\ k e. A ) -> ( ( invg ` G ) ` ( H ` k ) ) e. _V ) |
|
| 41 | 18 | feqmptd | |- ( ph -> ( invg ` G ) = ( x e. B |-> ( ( invg ` G ) ` x ) ) ) |
| 42 | fveq2 | |- ( x = ( H ` k ) -> ( ( invg ` G ) ` x ) = ( ( invg ` G ) ` ( H ` k ) ) ) |
|
| 43 | 33 38 41 42 | fmptco | |- ( ph -> ( ( invg ` G ) o. H ) = ( k e. A |-> ( ( invg ` G ) ` ( H ` k ) ) ) ) |
| 44 | 5 32 40 37 43 | offval2 | |- ( ph -> ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) = ( k e. A |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) ) |
| 45 | 36 39 44 | 3eqtr4d | |- ( ph -> ( F oF .- H ) = ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) |
| 46 | 45 | oveq2d | |- ( ph -> ( G gsum ( F oF .- H ) ) = ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) ) |
| 47 | 1 2 12 5 6 8 | gsumcl | |- ( ph -> ( G gsum F ) e. B ) |
| 48 | 1 2 12 5 7 9 | gsumcl | |- ( ph -> ( G gsum H ) e. B ) |
| 49 | 1 10 13 3 | grpsubval | |- ( ( ( G gsum F ) e. B /\ ( G gsum H ) e. B ) -> ( ( G gsum F ) .- ( G gsum H ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
| 50 | 47 48 49 | syl2anc | |- ( ph -> ( ( G gsum F ) .- ( G gsum H ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
| 51 | 31 46 50 | 3eqtr4d | |- ( ph -> ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) |