This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two group sums expressed as mappings. (Contributed by AV, 7-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfssub.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummptfssub.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsummptfssub.s | ⊢ − = ( -g ‘ 𝐺 ) | ||
| gsummptfssub.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| gsummptfssub.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsummptfssub.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) | ||
| gsummptfssub.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ∈ 𝐵 ) | ||
| gsummptfssub.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | ||
| gsummptfssub.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) ) | ||
| gsummptfssub.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| gsummptfssub.v | ⊢ ( 𝜑 → 𝐻 finSupp 0 ) | ||
| Assertion | gsummptfssub | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐷 ) ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfssub.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummptfssub.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsummptfssub.s | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | gsummptfssub.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 5 | gsummptfssub.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsummptfssub.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) | |
| 7 | gsummptfssub.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ∈ 𝐵 ) | |
| 8 | gsummptfssub.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | |
| 9 | gsummptfssub.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) ) | |
| 10 | gsummptfssub.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 11 | gsummptfssub.v | ⊢ ( 𝜑 → 𝐻 finSupp 0 ) | |
| 12 | 5 6 7 8 9 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐷 ) ) ) |
| 13 | 12 | eqcomd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐷 ) ) = ( 𝐹 ∘f − 𝐻 ) ) |
| 14 | 13 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐷 ) ) ) = ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) ) |
| 15 | 8 6 | fmpt3d | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 16 | 9 7 | fmpt3d | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 17 | 1 2 3 4 5 15 16 10 11 | gsumsub | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) |
| 18 | 14 17 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐷 ) ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) |