This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A stronger version of gsumpropd if at least one of the involved structures is a magma, see gsumpropd2 . (Contributed by AV, 31-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummgmpropd.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| gsummgmpropd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| gsummgmpropd.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | ||
| gsummgmpropd.b | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) | ||
| gsummgmpropd.m | ⊢ ( 𝜑 → 𝐺 ∈ Mgm ) | ||
| gsummgmpropd.e | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) ) | ||
| gsummgmpropd.n | ⊢ ( 𝜑 → Fun 𝐹 ) | ||
| gsummgmpropd.r | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) | ||
| Assertion | gsummgmpropd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummgmpropd.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 2 | gsummgmpropd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 3 | gsummgmpropd.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | |
| 4 | gsummgmpropd.b | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) | |
| 5 | gsummgmpropd.m | ⊢ ( 𝜑 → 𝐺 ∈ Mgm ) | |
| 6 | gsummgmpropd.e | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) ) | |
| 7 | gsummgmpropd.n | ⊢ ( 𝜑 → Fun 𝐹 ) | |
| 8 | gsummgmpropd.r | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 11 | 9 10 | mgmcl | ⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) |
| 12 | 11 | 3expib | ⊢ ( 𝐺 ∈ Mgm → ( ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → ( ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 14 | 13 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) |
| 15 | 1 2 3 4 14 6 7 8 | gsumpropd2 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |