This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgply1.s | ⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) | |
| subrgply1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| subrgply1.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | ||
| subrgply1.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| Assertion | subrgply1 | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgply1.s | ⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) | |
| 2 | subrgply1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | subrgply1.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | |
| 4 | subrgply1.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | 1on | ⊢ 1o ∈ On | |
| 6 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 7 | eqid | ⊢ ( 1o mPoly 𝐻 ) = ( 1o mPoly 𝐻 ) | |
| 8 | 3 4 | ply1bas | ⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝐻 ) ) |
| 9 | 6 2 7 8 | subrgmpl | ⊢ ( ( 1o ∈ On ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 ∈ ( SubRing ‘ ( 1o mPoly 𝑅 ) ) ) |
| 10 | 5 9 | mpan | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ ( 1o mPoly 𝑅 ) ) ) |
| 11 | eqidd | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 13 | 1 12 | ply1bas | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 14 | 13 | a1i | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 15 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 16 | 1 6 15 | ply1plusg | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
| 17 | 16 | a1i | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( +g ‘ 𝑆 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) ) |
| 18 | 17 | oveqdr | ⊢ ( ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) ) |
| 19 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 20 | 1 6 19 | ply1mulr | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
| 21 | 20 | a1i | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑆 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) ) |
| 22 | 21 | oveqdr | ⊢ ( ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) ) |
| 23 | 11 14 18 22 | subrgpropd | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( SubRing ‘ 𝑆 ) = ( SubRing ‘ ( 1o mPoly 𝑅 ) ) ) |
| 24 | 10 23 | eleqtrrd | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |