This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressply1.s | ⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) | |
| ressply1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| ressply1.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | ||
| ressply1.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| ressply1.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| ressply1.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | ||
| Assertion | ressply1bas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1.s | ⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ressply1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | ressply1.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | |
| 4 | ressply1.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | ressply1.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 6 | ressply1.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | |
| 7 | eqid | ⊢ ( PwSer1 ‘ 𝐻 ) = ( PwSer1 ‘ 𝐻 ) | |
| 8 | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) = ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 10 | 1 2 3 4 5 7 8 9 | ressply1bas2 | ⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ) |
| 11 | inss2 | ⊢ ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ⊆ ( Base ‘ 𝑆 ) | |
| 12 | 10 11 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 13 | 6 9 | ressbas2 | ⊢ ( 𝐵 ⊆ ( Base ‘ 𝑆 ) → 𝐵 = ( Base ‘ 𝑃 ) ) |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |