This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressply1.s | ⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) | |
| ressply1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| ressply1.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | ||
| ressply1.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| ressply1.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| ressply1.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | ||
| Assertion | ressply1add | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1.s | ⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ressply1.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | ressply1.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | |
| 4 | ressply1.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | ressply1.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 6 | ressply1.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | |
| 7 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 8 | eqid | ⊢ ( 1o mPoly 𝐻 ) = ( 1o mPoly 𝐻 ) | |
| 9 | 3 4 | ply1bas | ⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝐻 ) ) |
| 10 | 1on | ⊢ 1o ∈ On | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 1o ∈ On ) |
| 12 | eqid | ⊢ ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) = ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) | |
| 13 | 7 2 8 9 11 5 12 | ressmpladd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ ( 1o mPoly 𝐻 ) ) 𝑌 ) = ( 𝑋 ( +g ‘ ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) ) 𝑌 ) ) |
| 14 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 15 | 3 8 14 | ply1plusg | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ ( 1o mPoly 𝐻 ) ) |
| 16 | 15 | oveqi | ⊢ ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ ( 1o mPoly 𝐻 ) ) 𝑌 ) |
| 17 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 18 | 1 7 17 | ply1plusg | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
| 19 | 4 | fvexi | ⊢ 𝐵 ∈ V |
| 20 | 6 17 | ressplusg | ⊢ ( 𝐵 ∈ V → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑃 ) ) |
| 21 | 19 20 | ax-mp | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑃 ) |
| 22 | eqid | ⊢ ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) | |
| 23 | 12 22 | ressplusg | ⊢ ( 𝐵 ∈ V → ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) ) ) |
| 24 | 19 23 | ax-mp | ⊢ ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) ) |
| 25 | 18 21 24 | 3eqtr3i | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) ) |
| 26 | 25 | oveqi | ⊢ ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) = ( 𝑋 ( +g ‘ ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) ) 𝑌 ) |
| 27 | 13 16 26 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) ) |