This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the centralizer of a singleton. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzfval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzfval.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| cntzfval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | elcntzsn | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝑋 ∈ ( 𝑍 ‘ { 𝑌 } ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzfval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzfval.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | cntzfval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 4 | 1 2 3 | cntzsnval | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝑍 ‘ { 𝑌 } ) = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 + 𝑌 ) = ( 𝑌 + 𝑥 ) } ) |
| 5 | 4 | eleq2d | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝑋 ∈ ( 𝑍 ‘ { 𝑌 } ) ↔ 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑥 + 𝑌 ) = ( 𝑌 + 𝑥 ) } ) ) |
| 6 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 + 𝑌 ) = ( 𝑋 + 𝑌 ) ) | |
| 7 | oveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑌 + 𝑥 ) = ( 𝑌 + 𝑋 ) ) | |
| 8 | 6 7 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 + 𝑌 ) = ( 𝑌 + 𝑥 ) ↔ ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
| 9 | 8 | elrab | ⊢ ( 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑥 + 𝑌 ) = ( 𝑌 + 𝑥 ) } ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
| 10 | 5 9 | bitrdi | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝑋 ∈ ( 𝑍 ‘ { 𝑌 } ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |