This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpoexg.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| Assertion | mpoexxg | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ) → 𝐹 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoexg.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 2 | 1 | mpofun | ⊢ Fun 𝐹 |
| 3 | 1 | dmmpossx | ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
| 4 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 5 | xpexg | ⊢ ( ( { 𝑥 } ∈ V ∧ 𝐵 ∈ 𝑆 ) → ( { 𝑥 } × 𝐵 ) ∈ V ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝐵 ∈ 𝑆 → ( { 𝑥 } × 𝐵 ) ∈ V ) |
| 7 | 6 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 → ∀ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ V ) |
| 8 | iunexg | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ ∀ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ V ) → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ V ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ) → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ V ) |
| 10 | ssexg | ⊢ ( ( dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ V ) → dom 𝐹 ∈ V ) | |
| 11 | 3 9 10 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ) → dom 𝐹 ∈ V ) |
| 12 | funex | ⊢ ( ( Fun 𝐹 ∧ dom 𝐹 ∈ V ) → 𝐹 ∈ V ) | |
| 13 | 2 11 12 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ) → 𝐹 ∈ V ) |