This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gsum2d2 : show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsum2d2.b | |- B = ( Base ` G ) |
|
| gsum2d2.z | |- .0. = ( 0g ` G ) |
||
| gsum2d2.g | |- ( ph -> G e. CMnd ) |
||
| gsum2d2.a | |- ( ph -> A e. V ) |
||
| gsum2d2.r | |- ( ( ph /\ j e. A ) -> C e. W ) |
||
| gsum2d2.f | |- ( ( ph /\ ( j e. A /\ k e. C ) ) -> X e. B ) |
||
| gsum2d2.u | |- ( ph -> U e. Fin ) |
||
| gsum2d2.n | |- ( ( ph /\ ( ( j e. A /\ k e. C ) /\ -. j U k ) ) -> X = .0. ) |
||
| Assertion | gsum2d2lem | |- ( ph -> ( j e. A , k e. C |-> X ) finSupp .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsum2d2.b | |- B = ( Base ` G ) |
|
| 2 | gsum2d2.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsum2d2.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsum2d2.a | |- ( ph -> A e. V ) |
|
| 5 | gsum2d2.r | |- ( ( ph /\ j e. A ) -> C e. W ) |
|
| 6 | gsum2d2.f | |- ( ( ph /\ ( j e. A /\ k e. C ) ) -> X e. B ) |
|
| 7 | gsum2d2.u | |- ( ph -> U e. Fin ) |
|
| 8 | gsum2d2.n | |- ( ( ph /\ ( ( j e. A /\ k e. C ) /\ -. j U k ) ) -> X = .0. ) |
|
| 9 | eqid | |- ( j e. A , k e. C |-> X ) = ( j e. A , k e. C |-> X ) |
|
| 10 | 9 | mpofun | |- Fun ( j e. A , k e. C |-> X ) |
| 11 | 10 | a1i | |- ( ph -> Fun ( j e. A , k e. C |-> X ) ) |
| 12 | 6 | ralrimivva | |- ( ph -> A. j e. A A. k e. C X e. B ) |
| 13 | 9 | fmpox | |- ( A. j e. A A. k e. C X e. B <-> ( j e. A , k e. C |-> X ) : U_ j e. A ( { j } X. C ) --> B ) |
| 14 | 12 13 | sylib | |- ( ph -> ( j e. A , k e. C |-> X ) : U_ j e. A ( { j } X. C ) --> B ) |
| 15 | nfv | |- F/ j ph |
|
| 16 | nfiu1 | |- F/_ j U_ j e. A ( { j } X. C ) |
|
| 17 | nfcv | |- F/_ j U |
|
| 18 | 16 17 | nfdif | |- F/_ j ( U_ j e. A ( { j } X. C ) \ U ) |
| 19 | 18 | nfcri | |- F/ j z e. ( U_ j e. A ( { j } X. C ) \ U ) |
| 20 | 15 19 | nfan | |- F/ j ( ph /\ z e. ( U_ j e. A ( { j } X. C ) \ U ) ) |
| 21 | nfmpo1 | |- F/_ j ( j e. A , k e. C |-> X ) |
|
| 22 | nfcv | |- F/_ j z |
|
| 23 | 21 22 | nffv | |- F/_ j ( ( j e. A , k e. C |-> X ) ` z ) |
| 24 | 23 | nfeq1 | |- F/ j ( ( j e. A , k e. C |-> X ) ` z ) = .0. |
| 25 | relxp | |- Rel ( { j } X. C ) |
|
| 26 | 25 | rgenw | |- A. j e. A Rel ( { j } X. C ) |
| 27 | reliun | |- ( Rel U_ j e. A ( { j } X. C ) <-> A. j e. A Rel ( { j } X. C ) ) |
|
| 28 | 26 27 | mpbir | |- Rel U_ j e. A ( { j } X. C ) |
| 29 | eldifi | |- ( z e. ( U_ j e. A ( { j } X. C ) \ U ) -> z e. U_ j e. A ( { j } X. C ) ) |
|
| 30 | 29 | adantl | |- ( ( ph /\ z e. ( U_ j e. A ( { j } X. C ) \ U ) ) -> z e. U_ j e. A ( { j } X. C ) ) |
| 31 | elrel | |- ( ( Rel U_ j e. A ( { j } X. C ) /\ z e. U_ j e. A ( { j } X. C ) ) -> E. j E. k z = <. j , k >. ) |
|
| 32 | 28 30 31 | sylancr | |- ( ( ph /\ z e. ( U_ j e. A ( { j } X. C ) \ U ) ) -> E. j E. k z = <. j , k >. ) |
| 33 | nfv | |- F/ k ( ph /\ z e. ( U_ j e. A ( { j } X. C ) \ U ) ) |
|
| 34 | nfmpo2 | |- F/_ k ( j e. A , k e. C |-> X ) |
|
| 35 | nfcv | |- F/_ k z |
|
| 36 | 34 35 | nffv | |- F/_ k ( ( j e. A , k e. C |-> X ) ` z ) |
| 37 | 36 | nfeq1 | |- F/ k ( ( j e. A , k e. C |-> X ) ` z ) = .0. |
| 38 | simprr | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> z = <. j , k >. ) |
|
| 39 | 38 | fveq2d | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> ( ( j e. A , k e. C |-> X ) ` z ) = ( ( j e. A , k e. C |-> X ) ` <. j , k >. ) ) |
| 40 | df-ov | |- ( j ( j e. A , k e. C |-> X ) k ) = ( ( j e. A , k e. C |-> X ) ` <. j , k >. ) |
|
| 41 | simprl | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> z e. ( U_ j e. A ( { j } X. C ) \ U ) ) |
|
| 42 | 38 41 | eqeltrrd | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> <. j , k >. e. ( U_ j e. A ( { j } X. C ) \ U ) ) |
| 43 | 42 | eldifad | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> <. j , k >. e. U_ j e. A ( { j } X. C ) ) |
| 44 | opeliunxp | |- ( <. j , k >. e. U_ j e. A ( { j } X. C ) <-> ( j e. A /\ k e. C ) ) |
|
| 45 | 43 44 | sylib | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> ( j e. A /\ k e. C ) ) |
| 46 | 45 | simpld | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> j e. A ) |
| 47 | 45 | simprd | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> k e. C ) |
| 48 | 45 6 | syldan | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> X e. B ) |
| 49 | 9 | ovmpt4g | |- ( ( j e. A /\ k e. C /\ X e. B ) -> ( j ( j e. A , k e. C |-> X ) k ) = X ) |
| 50 | 46 47 48 49 | syl3anc | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> ( j ( j e. A , k e. C |-> X ) k ) = X ) |
| 51 | 40 50 | eqtr3id | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> ( ( j e. A , k e. C |-> X ) ` <. j , k >. ) = X ) |
| 52 | eldifn | |- ( z e. ( U_ j e. A ( { j } X. C ) \ U ) -> -. z e. U ) |
|
| 53 | 52 | ad2antrl | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> -. z e. U ) |
| 54 | 38 | eleq1d | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> ( z e. U <-> <. j , k >. e. U ) ) |
| 55 | df-br | |- ( j U k <-> <. j , k >. e. U ) |
|
| 56 | 54 55 | bitr4di | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> ( z e. U <-> j U k ) ) |
| 57 | 53 56 | mtbid | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> -. j U k ) |
| 58 | 45 57 | jca | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> ( ( j e. A /\ k e. C ) /\ -. j U k ) ) |
| 59 | 58 8 | syldan | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> X = .0. ) |
| 60 | 39 51 59 | 3eqtrd | |- ( ( ph /\ ( z e. ( U_ j e. A ( { j } X. C ) \ U ) /\ z = <. j , k >. ) ) -> ( ( j e. A , k e. C |-> X ) ` z ) = .0. ) |
| 61 | 60 | expr | |- ( ( ph /\ z e. ( U_ j e. A ( { j } X. C ) \ U ) ) -> ( z = <. j , k >. -> ( ( j e. A , k e. C |-> X ) ` z ) = .0. ) ) |
| 62 | 33 37 61 | exlimd | |- ( ( ph /\ z e. ( U_ j e. A ( { j } X. C ) \ U ) ) -> ( E. k z = <. j , k >. -> ( ( j e. A , k e. C |-> X ) ` z ) = .0. ) ) |
| 63 | 20 24 32 62 | exlimimdd | |- ( ( ph /\ z e. ( U_ j e. A ( { j } X. C ) \ U ) ) -> ( ( j e. A , k e. C |-> X ) ` z ) = .0. ) |
| 64 | 14 63 | suppss | |- ( ph -> ( ( j e. A , k e. C |-> X ) supp .0. ) C_ U ) |
| 65 | 7 64 | ssfid | |- ( ph -> ( ( j e. A , k e. C |-> X ) supp .0. ) e. Fin ) |
| 66 | 5 | ralrimiva | |- ( ph -> A. j e. A C e. W ) |
| 67 | 9 | mpoexxg | |- ( ( A e. V /\ A. j e. A C e. W ) -> ( j e. A , k e. C |-> X ) e. _V ) |
| 68 | 4 66 67 | syl2anc | |- ( ph -> ( j e. A , k e. C |-> X ) e. _V ) |
| 69 | 2 | fvexi | |- .0. e. _V |
| 70 | 69 | a1i | |- ( ph -> .0. e. _V ) |
| 71 | isfsupp | |- ( ( ( j e. A , k e. C |-> X ) e. _V /\ .0. e. _V ) -> ( ( j e. A , k e. C |-> X ) finSupp .0. <-> ( Fun ( j e. A , k e. C |-> X ) /\ ( ( j e. A , k e. C |-> X ) supp .0. ) e. Fin ) ) ) |
|
| 72 | 68 70 71 | syl2anc | |- ( ph -> ( ( j e. A , k e. C |-> X ) finSupp .0. <-> ( Fun ( j e. A , k e. C |-> X ) /\ ( ( j e. A , k e. C |-> X ) supp .0. ) e. Fin ) ) ) |
| 73 | 11 65 72 | mpbir2and | |- ( ph -> ( j e. A , k e. C |-> X ) finSupp .0. ) |