This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for grpoidinv . (Contributed by NM, 11-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpidinvlem3.2 | ⊢ ( 𝜑 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) | ||
| grpidinvlem3.3 | ⊢ ( 𝜓 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ) | ||
| Assertion | grpoidinvlem3 | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpidinvlem3.2 | ⊢ ( 𝜑 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) | |
| 3 | grpidinvlem3.3 | ⊢ ( 𝜓 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ) | |
| 4 | oveq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 𝐺 𝑥 ) = ( 𝑦 𝐺 𝑥 ) ) | |
| 5 | 4 | eqeq1d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) |
| 6 | 5 | cbvrexvw | ⊢ ( ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) |
| 8 | 3 7 | bitri | ⊢ ( 𝜓 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) |
| 9 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 𝐺 𝑥 ) = ( 𝑦 𝐺 𝐴 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 11 | 10 | rexbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 12 | 11 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| 13 | 8 12 | sylanb | ⊢ ( ( 𝜓 ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| 14 | 13 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| 15 | 14 | adantll | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| 16 | 1 | grpocl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
| 17 | 16 | 3expa | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
| 18 | 17 | adantllr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
| 19 | 18 | adantllr | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
| 20 | 2 | biimpi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) |
| 21 | 20 | ad2antrl | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) |
| 23 | oveq2 | ⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 𝑥 ) = ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) ) | |
| 24 | id | ⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → 𝑥 = ( 𝐴 𝐺 𝑦 ) ) | |
| 25 | 23 24 | eqeq12d | ⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) ) |
| 26 | 25 | rspcva | ⊢ ( ( ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
| 27 | 19 22 26 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
| 29 | pm3.22 | ⊢ ( ( ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐺 ∈ GrpOp ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) | |
| 30 | 29 | an31s | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
| 31 | 30 | adantllr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
| 32 | 31 | adantllr | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
| 34 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑈 𝐺 𝑥 ) = ( 𝑈 𝐺 𝑦 ) ) | |
| 35 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 36 | 34 35 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 𝑦 ) = 𝑦 ) ) |
| 37 | 36 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
| 38 | 2 37 | sylanb | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
| 39 | 38 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
| 40 | 39 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
| 41 | 40 | adantlll | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
| 42 | 41 | anim1i | ⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( ( 𝑈 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 43 | 1 | grpoidinvlem2 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) → ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
| 44 | 33 42 43 | syl2anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
| 45 | 16 | 3expb | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
| 46 | 45 | ad2ant2rl | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
| 47 | oveq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 𝐺 𝑥 ) = ( 𝑤 𝐺 𝑥 ) ) | |
| 48 | 47 | eqeq1d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑤 𝐺 𝑥 ) = 𝑈 ) ) |
| 49 | 48 | cbvrexvw | ⊢ ( ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ) |
| 50 | 49 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ) |
| 51 | 3 50 | bitri | ⊢ ( 𝜓 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ) |
| 52 | oveq2 | ⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( 𝑤 𝐺 𝑥 ) = ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) ) | |
| 53 | 52 | eqeq1d | ⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( ( 𝑤 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) |
| 54 | 53 | rexbidv | ⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ↔ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) |
| 55 | 54 | rspcva | ⊢ ( ( ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ) → ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
| 56 | 51 55 | sylan2b | ⊢ ( ( ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ∧ 𝜓 ) → ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
| 57 | anass | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ↔ ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) | |
| 58 | 57 | biimpi | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) |
| 59 | 58 | an32s | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) |
| 60 | 59 | ex | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) → ( 𝑤 ∈ 𝑋 → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) ) |
| 61 | 45 60 | syldan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑤 ∈ 𝑋 → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) ) |
| 62 | 61 | ad2ant2rl | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( 𝑤 ∈ 𝑋 → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) ) |
| 63 | 62 | imp | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) |
| 64 | 1 | grpoidinvlem1 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ∧ ( ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ∧ ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
| 65 | 63 64 | sylan | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) ∧ 𝑤 ∈ 𝑋 ) ∧ ( ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ∧ ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
| 66 | 65 | exp43 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( 𝑤 ∈ 𝑋 → ( ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) ) |
| 67 | 66 | rexlimdv | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) |
| 68 | 56 67 | syl5 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ∧ 𝜓 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) |
| 69 | 46 68 | mpand | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( 𝜓 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) |
| 70 | 69 | exp32 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) → ( 𝜑 → ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝜓 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) ) ) |
| 71 | 70 | com34 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) → ( 𝜑 → ( 𝜓 → ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) ) ) |
| 72 | 71 | imp32 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) |
| 73 | 72 | impl | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) |
| 74 | 73 | adantr | ⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) |
| 75 | 44 74 | mpd | ⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
| 76 | 28 75 | eqtr3d | ⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( 𝐴 𝐺 𝑦 ) = 𝑈 ) |
| 77 | 76 | ex | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) |
| 78 | 77 | ancld | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
| 79 | 78 | reximdva | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
| 80 | 15 79 | mpd | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) |