This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for grpoidinv . (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | grpoidinvlem1 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑈 𝐺 𝐴 ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | id | ⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) | |
| 3 | 2 | 3anidm23 | ⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 4 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) ) |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) ) |
| 7 | oveq1 | ⊢ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ) | |
| 8 | 7 | ad2antrl | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ) |
| 9 | oveq2 | ⊢ ( ( 𝐴 𝐺 𝐴 ) = 𝐴 → ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) = ( 𝑌 𝐺 𝐴 ) ) | |
| 10 | 9 | ad2antll | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) = ( 𝑌 𝐺 𝐴 ) ) |
| 11 | simprl | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑌 𝐺 𝐴 ) = 𝑈 ) | |
| 12 | 10 11 | eqtrd | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) = 𝑈 ) |
| 13 | 6 8 12 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑈 𝐺 𝐴 ) = 𝑈 ) |