This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | grpoidinv | ⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | simpl | ⊢ ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) → ( 𝑢 𝐺 𝑧 ) = 𝑧 ) | |
| 3 | 2 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) → ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ) |
| 4 | oveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑢 𝐺 𝑧 ) = ( 𝑢 𝐺 𝑥 ) ) | |
| 5 | id | ⊢ ( 𝑧 = 𝑥 → 𝑧 = 𝑥 ) | |
| 6 | 4 5 | eqeq12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ↔ ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
| 7 | 6 | rspccva | ⊢ ( ( ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| 8 | 3 7 | sylan | ⊢ ( ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| 9 | 8 | adantll | ⊢ ( ( ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| 10 | 9 | adantll | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| 11 | simpl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) → 𝐺 ∈ GrpOp ) | |
| 12 | 11 | anim1i | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) ) |
| 13 | id | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ) | |
| 14 | 13 | adantrr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) → ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ) |
| 16 | 3 | adantl | ⊢ ( ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) → ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ) |
| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ) |
| 18 | simpr | ⊢ ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) → ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) | |
| 19 | 18 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) |
| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) |
| 22 | 15 17 21 | jca32 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ( ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) |
| 23 | biid | ⊢ ( ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ) | |
| 24 | biid | ⊢ ( ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ↔ ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) | |
| 25 | 1 23 24 | grpoidinvlem3 | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ( ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) |
| 26 | 22 25 | sylancom | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) |
| 27 | 1 | grpoidinvlem4 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ( 𝑥 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑥 ) ) |
| 28 | 12 26 27 | syl2anc | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑥 ) ) |
| 29 | 28 10 | eqtrd | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑢 ) = 𝑥 ) |
| 30 | 10 29 26 | jca31 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) |
| 31 | 30 | ralrimiva | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) |
| 32 | 1 | grpolidinv | ⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) |
| 33 | 31 32 | reximddv | ⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) |