This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for grpoidinv . (Contributed by NM, 14-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | grpoidinvlem4 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) → ( 𝐴 𝐺 𝑈 ) = ( 𝑈 𝐺 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | simpll | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝐺 ∈ GrpOp ) | |
| 3 | simplr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 4 | simpr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) | |
| 5 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝐴 ) = ( 𝐴 𝐺 ( 𝑦 𝐺 𝐴 ) ) ) |
| 6 | 2 3 4 3 5 | syl13anc | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝐴 ) = ( 𝐴 𝐺 ( 𝑦 𝐺 𝐴 ) ) ) |
| 7 | oveq2 | ⊢ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( 𝐴 𝐺 ( 𝑦 𝐺 𝐴 ) ) = ( 𝐴 𝐺 𝑈 ) ) | |
| 8 | 6 7 | sylan9eq | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝐴 ) = ( 𝐴 𝐺 𝑈 ) ) |
| 9 | oveq1 | ⊢ ( ( 𝐴 𝐺 𝑦 ) = 𝑈 → ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ) | |
| 10 | 8 9 | sylan9req | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝐴 𝐺 𝑈 ) = ( 𝑈 𝐺 𝐴 ) ) |
| 11 | 10 | anasss | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) → ( 𝐴 𝐺 𝑈 ) = ( 𝑈 𝐺 𝐴 ) ) |
| 12 | 11 | r19.29an | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) → ( 𝐴 𝐺 𝑈 ) = ( 𝑈 𝐺 𝐴 ) ) |