This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for grpoidinv . (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | grpoidinvlem2 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) ) = ( 𝐴 𝐺 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | simprr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 3 | simprl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝑌 ∈ 𝑋 ) | |
| 4 | 1 | grpocl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) |
| 5 | 4 | 3com23 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) |
| 6 | 5 | 3expb | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) |
| 7 | 2 3 6 | 3jca | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) ) |
| 8 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) ) = ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) ) |
| 9 | 7 8 | syldan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) ) = ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) ) = ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) ) |
| 11 | oveq1 | ⊢ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) = ( 𝑈 𝐺 𝑌 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) = ( 𝑈 𝐺 𝑌 ) ) |
| 13 | simpl | ⊢ ( ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) → ( 𝑈 𝐺 𝑌 ) = 𝑌 ) | |
| 14 | 12 13 | eqtr2d | ⊢ ( ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) → 𝑌 = ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) ) |
| 15 | id | ⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) → ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) ) | |
| 16 | 15 | 3anidm13 | ⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) ) |
| 17 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) |
| 18 | 16 17 | sylan2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) |
| 19 | 14 18 | sylan9eqr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → 𝑌 = ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) |
| 20 | 19 | eqcomd | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) = 𝑌 ) |
| 21 | 20 | oveq2d | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) = ( 𝐴 𝐺 𝑌 ) ) |
| 22 | 10 21 | eqtrd | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) ) = ( 𝐴 𝐺 𝑌 ) ) |