This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For two locally isomorphic graphs G and H and a vertex A of G there is a bijection f mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) , so that the mapped vertices of an edge { A , B } containing the vertex A is an edge between the vertices in M containing the vertex ( FA ) . (Contributed by AV, 28-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrvtxedg.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) | |
| clnbgrvtxedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | ||
| clnbgrvtxedg.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | ||
| grlimedgclnbgr.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) | ||
| grlimedgclnbgr.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | ||
| grlimedgclnbgr.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | ||
| Assertion | grlimprclnbgrvtx | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxedg.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) | |
| 2 | clnbgrvtxedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 3 | clnbgrvtxedg.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | |
| 4 | grlimedgclnbgr.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) | |
| 5 | grlimedgclnbgr.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | |
| 6 | grlimedgclnbgr.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | |
| 7 | 1 2 3 4 5 6 | grlimprclnbgredg | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) |
| 8 | simprl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) → 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) | |
| 9 | sseq1 | ⊢ ( 𝑥 = { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } → ( 𝑥 ⊆ 𝑀 ↔ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) | |
| 10 | 9 6 | elrab2 | ⊢ ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ↔ ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 11 | 10 | biimpi | ⊢ ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 13 | 12 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 14 | fvex | ⊢ ( 𝑓 ‘ 𝐴 ) ∈ V | |
| 15 | fvex | ⊢ ( 𝑓 ‘ 𝐵 ) ∈ V | |
| 16 | 14 15 | prss | ⊢ ( ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ↔ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) |
| 17 | uspgrupgr | ⊢ ( 𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐻 ∈ UPGraph ) |
| 19 | 18 | 3ad2ant1 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐻 ∈ UPGraph ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) → 𝐻 ∈ UPGraph ) |
| 21 | 4 | eleq2i | ⊢ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ↔ ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 22 | 5 | clnbupgreli | ⊢ ( ( 𝐻 ∈ UPGraph ∧ ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) |
| 23 | 22 | ex | ⊢ ( 𝐻 ∈ UPGraph → ( ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) → ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) |
| 24 | 21 23 | biimtrid | ⊢ ( 𝐻 ∈ UPGraph → ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 → ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) |
| 25 | 4 | eleq2i | ⊢ ( ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ↔ ( 𝑓 ‘ 𝐵 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 26 | 5 | clnbupgreli | ⊢ ( ( 𝐻 ∈ UPGraph ∧ ( 𝑓 ‘ 𝐵 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) |
| 27 | 26 | ex | ⊢ ( 𝐻 ∈ UPGraph → ( ( 𝑓 ‘ 𝐵 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) |
| 28 | 25 27 | biimtrid | ⊢ ( 𝐻 ∈ UPGraph → ( ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) |
| 29 | 24 28 | anim12d | ⊢ ( 𝐻 ∈ UPGraph → ( ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) → ( ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) ) |
| 30 | 20 29 | syl | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) → ( ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) → ( ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) ) |
| 31 | 30 | imp | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) |
| 32 | prcom | ⊢ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = { ( 𝑓 ‘ 𝐵 ) , ( 𝑓 ‘ 𝐴 ) } | |
| 33 | preq1 | ⊢ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → { ( 𝑓 ‘ 𝐵 ) , ( 𝑓 ‘ 𝐴 ) } = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ) | |
| 34 | 32 33 | eqtrid | ⊢ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ) |
| 35 | 34 | eleq1d | ⊢ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 36 | 35 | biimpcd | ⊢ ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 38 | 37 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 39 | 38 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 40 | prcom | ⊢ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } | |
| 41 | 40 | eleq1i | ⊢ ( { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) |
| 42 | 41 | biimpi | ⊢ ( { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) |
| 43 | 42 | adantl | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) |
| 44 | 20 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → 𝐻 ∈ UPGraph ) |
| 45 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 46 | 15 45 | pm3.2i | ⊢ ( ( 𝑓 ‘ 𝐵 ) ∈ V ∧ ( 𝐹 ‘ 𝐴 ) ∈ V ) |
| 47 | 46 | a1i | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( ( 𝑓 ‘ 𝐵 ) ∈ V ∧ ( 𝐹 ‘ 𝐴 ) ∈ V ) ) |
| 48 | simpr | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) | |
| 49 | 44 47 48 | 3jca | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( 𝐻 ∈ UPGraph ∧ ( ( 𝑓 ‘ 𝐵 ) ∈ V ∧ ( 𝐹 ‘ 𝐴 ) ∈ V ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) |
| 50 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 51 | 50 5 | upgrpredgv | ⊢ ( ( 𝐻 ∈ UPGraph ∧ ( ( 𝑓 ‘ 𝐵 ) ∈ V ∧ ( 𝐹 ‘ 𝐴 ) ∈ V ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( ( 𝑓 ‘ 𝐵 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( Vtx ‘ 𝐻 ) ) ) |
| 52 | simpr | ⊢ ( ( ( 𝑓 ‘ 𝐵 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( Vtx ‘ 𝐻 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Vtx ‘ 𝐻 ) ) | |
| 53 | 49 51 52 | 3syl | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 54 | 50 | clnbgrvtxel | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( Vtx ‘ 𝐻 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 55 | 4 | eleq2i | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑀 ↔ ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 56 | 54 55 | sylibr | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( Vtx ‘ 𝐻 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑀 ) |
| 57 | 53 56 | syl | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑀 ) |
| 58 | simplrr | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) | |
| 59 | 57 58 | prssd | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) |
| 60 | sseq1 | ⊢ ( 𝑥 = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } → ( 𝑥 ⊆ 𝑀 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) | |
| 61 | 60 6 | elrab2 | ⊢ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ↔ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 62 | 43 59 61 | sylanbrc | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) |
| 63 | 62 | ex | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) |
| 64 | 39 63 | orim12d | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ) |
| 65 | 64 | imp | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) |
| 66 | 65 | orcomd | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 67 | 66 | ex | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |
| 68 | 67 | adantld | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( ( ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |
| 69 | 31 68 | mpd | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 70 | 69 | ex | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) → ( ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |
| 71 | 16 70 | biimtrrid | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |
| 72 | 71 | expimpd | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) → ( ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |
| 73 | 13 72 | mpd | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 74 | 8 73 | jca | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |
| 75 | 74 | ex | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) ) |
| 76 | 75 | eximdv | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) ) |
| 77 | 7 76 | mpd | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |