This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | upgrpredgv | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊 ) ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | upgredg | ⊢ ( ( 𝐺 ∈ UPGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 { 𝑀 , 𝑁 } = { 𝑚 , 𝑛 } ) |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊 ) ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 { 𝑀 , 𝑁 } = { 𝑚 , 𝑛 } ) |
| 5 | preq12bg | ⊢ ( ( ( 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( { 𝑀 , 𝑁 } = { 𝑚 , 𝑛 } ↔ ( ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) ∨ ( 𝑀 = 𝑛 ∧ 𝑁 = 𝑚 ) ) ) ) | |
| 6 | 5 | 3ad2antl2 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊 ) ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( { 𝑀 , 𝑁 } = { 𝑚 , 𝑛 } ↔ ( ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) ∨ ( 𝑀 = 𝑛 ∧ 𝑁 = 𝑚 ) ) ) ) |
| 7 | eleq1 | ⊢ ( 𝑚 = 𝑀 → ( 𝑚 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉 ) ) | |
| 8 | 7 | eqcoms | ⊢ ( 𝑀 = 𝑚 → ( 𝑚 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉 ) ) |
| 9 | 8 | biimpd | ⊢ ( 𝑀 = 𝑚 → ( 𝑚 ∈ 𝑉 → 𝑀 ∈ 𝑉 ) ) |
| 10 | eleq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉 ) ) | |
| 11 | 10 | eqcoms | ⊢ ( 𝑁 = 𝑛 → ( 𝑛 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉 ) ) |
| 12 | 11 | biimpd | ⊢ ( 𝑁 = 𝑛 → ( 𝑛 ∈ 𝑉 → 𝑁 ∈ 𝑉 ) ) |
| 13 | 9 12 | im2anan9 | ⊢ ( ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) → ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 14 | 13 | com12 | ⊢ ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 15 | eleq1 | ⊢ ( 𝑛 = 𝑀 → ( 𝑛 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉 ) ) | |
| 16 | 15 | eqcoms | ⊢ ( 𝑀 = 𝑛 → ( 𝑛 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉 ) ) |
| 17 | 16 | biimpd | ⊢ ( 𝑀 = 𝑛 → ( 𝑛 ∈ 𝑉 → 𝑀 ∈ 𝑉 ) ) |
| 18 | eleq1 | ⊢ ( 𝑚 = 𝑁 → ( 𝑚 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉 ) ) | |
| 19 | 18 | eqcoms | ⊢ ( 𝑁 = 𝑚 → ( 𝑚 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉 ) ) |
| 20 | 19 | biimpd | ⊢ ( 𝑁 = 𝑚 → ( 𝑚 ∈ 𝑉 → 𝑁 ∈ 𝑉 ) ) |
| 21 | 17 20 | im2anan9 | ⊢ ( ( 𝑀 = 𝑛 ∧ 𝑁 = 𝑚 ) → ( ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 22 | 21 | com12 | ⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) → ( ( 𝑀 = 𝑛 ∧ 𝑁 = 𝑚 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 23 | 22 | ancoms | ⊢ ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( ( 𝑀 = 𝑛 ∧ 𝑁 = 𝑚 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 24 | 14 23 | jaod | ⊢ ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( ( ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) ∨ ( 𝑀 = 𝑛 ∧ 𝑁 = 𝑚 ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊 ) ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) ∨ ( 𝑀 = 𝑛 ∧ 𝑁 = 𝑚 ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 26 | 6 25 | sylbid | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊 ) ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( { 𝑀 , 𝑁 } = { 𝑚 , 𝑛 } → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 27 | 26 | rexlimdvva | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊 ) ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → ( ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 { 𝑀 , 𝑁 } = { 𝑚 , 𝑛 } → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 28 | 4 27 | mpd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊 ) ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |