This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of the closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 28-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clnbupgreli.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| Assertion | clnbupgreli | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) → ( 𝑁 = 𝐾 ∨ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbupgreli.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | simpr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) → 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) | |
| 3 | simpl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) → 𝐺 ∈ UPGraph ) | |
| 4 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 5 | 4 | clnbgrcl | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) → 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) → 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) |
| 7 | 4 | clnbgrisvtx | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 9 | 4 1 | clnbupgrel | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ ( 𝑁 = 𝐾 ∨ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) ) |
| 10 | 3 6 8 9 | syl3anc | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) → ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ ( 𝑁 = 𝐾 ∨ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) ) |
| 11 | 2 10 | mpbid | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) → ( 𝑁 = 𝐾 ∨ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) |