This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Local isomorphisms between simple pseudographs map an edge onto an edge with an endpoint being the image of one of the endpoints of the first edge under the local isomorphism. (Contributed by AV, 28-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grlimgredgex.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| grlimgredgex.e | ⊢ 𝐸 = ( Edg ‘ 𝐻 ) | ||
| grlimgredgex.v | ⊢ 𝑉 = ( Vtx ‘ 𝐻 ) | ||
| grlimgredgex.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| grlimgredgex.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | ||
| grlimgredgex.p | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝐼 ) | ||
| grlimgredgex.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | ||
| grlimgredgex.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | ||
| grlimgredgex.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) | ||
| Assertion | grlimgredgex | ⊢ ( 𝜑 → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlimgredgex.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 2 | grlimgredgex.e | ⊢ 𝐸 = ( Edg ‘ 𝐻 ) | |
| 3 | grlimgredgex.v | ⊢ 𝑉 = ( Vtx ‘ 𝐻 ) | |
| 4 | grlimgredgex.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 5 | grlimgredgex.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | |
| 6 | grlimgredgex.p | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝐼 ) | |
| 7 | grlimgredgex.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | |
| 8 | grlimgredgex.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | |
| 9 | grlimgredgex.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) | |
| 10 | eqid | ⊢ ( 𝐺 ClNeighbVtx 𝐴 ) = ( 𝐺 ClNeighbVtx 𝐴 ) | |
| 11 | eqid | ⊢ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } | |
| 12 | eqid | ⊢ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) | |
| 13 | eqid | ⊢ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } = { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } | |
| 14 | 10 1 11 12 2 13 | grlimprclnbgrvtx | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ) ) |
| 15 | 7 8 9 4 5 6 14 | syl213anc | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ) ) |
| 16 | f1of | ⊢ ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) → 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) ⟶ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) ⟶ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 18 | uspgrupgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) | |
| 19 | 7 18 | syl | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |
| 20 | 4 5 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) |
| 21 | 19 20 6 | 3jca | ⊢ ( 𝜑 → ( 𝐺 ∈ UPGraph ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) |
| 22 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 23 | 22 1 | upgrpredgv | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 24 | simpr | ⊢ ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 25 | 21 23 24 | 3syl | ⊢ ( 𝜑 → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
| 26 | simpl | ⊢ ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 27 | 21 23 26 | 3syl | ⊢ ( 𝜑 → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 28 | 22 1 | predgclnbgrel | ⊢ ( ( 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 29 | 25 27 6 28 | syl3anc | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 31 | 17 30 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝐵 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 32 | 3 | clnbgrisvtx | ⊢ ( ( 𝑓 ‘ 𝐵 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) → ( 𝑓 ‘ 𝐵 ) ∈ 𝑉 ) |
| 33 | 31 32 | syl | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝐵 ) ∈ 𝑉 ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → ( 𝑓 ‘ 𝐵 ) ∈ 𝑉 ) |
| 35 | preq2 | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝐵 ) → { ( 𝐹 ‘ 𝐴 ) , 𝑣 } = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ) | |
| 36 | 35 | eleq1d | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝐵 ) → ( { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐸 ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ∧ 𝑣 = ( 𝑓 ‘ 𝐵 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐸 ) ) |
| 38 | sseq1 | ⊢ ( 𝑥 = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } → ( 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) | |
| 39 | 38 | elrab | ⊢ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ↔ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 40 | 39 | simplbi | ⊢ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐸 ) |
| 41 | 40 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐸 ) |
| 42 | 34 37 41 | rspcedvd | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) |
| 43 | 42 | ex | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) ) |
| 44 | 22 | clnbgrvtxel | ⊢ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) → 𝐴 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 45 | 27 44 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → 𝐴 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 47 | 17 46 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 48 | 3 | clnbgrisvtx | ⊢ ( ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) → ( 𝑓 ‘ 𝐴 ) ∈ 𝑉 ) |
| 49 | 47 48 | syl | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝐴 ) ∈ 𝑉 ) |
| 50 | 49 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → ( 𝑓 ‘ 𝐴 ) ∈ 𝑉 ) |
| 51 | preq2 | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝐴 ) → { ( 𝐹 ‘ 𝐴 ) , 𝑣 } = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ) | |
| 52 | 51 | eleq1d | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝐴 ) → ( { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐸 ) ) |
| 53 | 52 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ∧ 𝑣 = ( 𝑓 ‘ 𝐴 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐸 ) ) |
| 54 | sseq1 | ⊢ ( 𝑥 = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } → ( 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) | |
| 55 | 54 | elrab | ⊢ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ↔ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 56 | 55 | simplbi | ⊢ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐸 ) |
| 57 | 56 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐸 ) |
| 58 | 50 53 57 | rspcedvd | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) |
| 59 | 58 | ex | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) ) |
| 60 | 43 59 | jaod | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) ) |
| 61 | 60 | expimpd | ⊢ ( 𝜑 → ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ) → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) ) |
| 62 | 61 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ) → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) ) |
| 63 | 15 62 | mpd | ⊢ ( 𝜑 → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) |