This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For two locally isomorphic graphs G and H and a vertex A of G there is a bijection f mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) , so that the mapped vertices of an edge { A , B } containing the vertex A is an edge between the vertices in M . (Contributed by AV, 27-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrvtxedg.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) | |
| clnbgrvtxedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | ||
| clnbgrvtxedg.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | ||
| grlimedgclnbgr.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) | ||
| grlimedgclnbgr.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | ||
| grlimedgclnbgr.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | ||
| Assertion | grlimprclnbgredg | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxedg.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) | |
| 2 | clnbgrvtxedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 3 | clnbgrvtxedg.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | |
| 4 | grlimedgclnbgr.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) | |
| 5 | grlimedgclnbgr.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | |
| 6 | grlimedgclnbgr.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | |
| 7 | 1 2 3 4 5 6 | grlimprclnbgr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |
| 8 | simpr1 | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) | |
| 9 | f1of | ⊢ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 → 𝑔 : 𝐾 ⟶ 𝐿 ) | |
| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 11 | 10 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 12 | uspgruhgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UHGraph ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐺 ∈ UHGraph ) |
| 15 | simp33 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → { 𝐴 , 𝐵 } ∈ 𝐼 ) | |
| 16 | prid1g | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) | |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 18 | 17 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 19 | 14 15 18 | 3jca | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( 𝐺 ∈ UHGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) |
| 20 | 19 | adantr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → ( 𝐺 ∈ UHGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) |
| 21 | 1 2 3 | clnbgrvtxedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) → { 𝐴 , 𝐵 } ∈ 𝐾 ) |
| 22 | 20 21 | syl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → { 𝐴 , 𝐵 } ∈ 𝐾 ) |
| 23 | 11 22 | ffvelcdmd | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ∈ 𝐿 ) |
| 24 | eleq1 | ⊢ ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ↔ ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ∈ 𝐿 ) ) | |
| 25 | 24 | 3ad2ant3 | ⊢ ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ↔ ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ∈ 𝐿 ) ) |
| 26 | 25 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ↔ ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ∈ 𝐿 ) ) |
| 27 | 23 26 | mpbird | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) |
| 28 | 8 27 | jca | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) |
| 29 | 28 | ex | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ) |
| 30 | 29 | exlimdv | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ) |
| 31 | 30 | eximdv | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ) |
| 32 | 7 31 | mpd | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) |