This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For two locally isomorphic graphs G and H and a vertex A of G there is a bijection f mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) , so that the mapped vertices of an edge { A , B } containing the vertex A is an edge between the vertices in M containing the vertex ( FA ) . (Contributed by AV, 28-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrvtxedg.n | |- N = ( G ClNeighbVtx A ) |
|
| clnbgrvtxedg.i | |- I = ( Edg ` G ) |
||
| clnbgrvtxedg.k | |- K = { x e. I | x C_ N } |
||
| grlimedgclnbgr.m | |- M = ( H ClNeighbVtx ( F ` A ) ) |
||
| grlimedgclnbgr.j | |- J = ( Edg ` H ) |
||
| grlimedgclnbgr.l | |- L = { x e. J | x C_ M } |
||
| Assertion | grlimprclnbgrvtx | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f ( f : N -1-1-onto-> M /\ ( { ( F ` A ) , ( f ` B ) } e. L \/ { ( F ` A ) , ( f ` A ) } e. L ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxedg.n | |- N = ( G ClNeighbVtx A ) |
|
| 2 | clnbgrvtxedg.i | |- I = ( Edg ` G ) |
|
| 3 | clnbgrvtxedg.k | |- K = { x e. I | x C_ N } |
|
| 4 | grlimedgclnbgr.m | |- M = ( H ClNeighbVtx ( F ` A ) ) |
|
| 5 | grlimedgclnbgr.j | |- J = ( Edg ` H ) |
|
| 6 | grlimedgclnbgr.l | |- L = { x e. J | x C_ M } |
|
| 7 | 1 2 3 4 5 6 | grlimprclnbgredg | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) |
| 8 | simprl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) -> f : N -1-1-onto-> M ) |
|
| 9 | sseq1 | |- ( x = { ( f ` A ) , ( f ` B ) } -> ( x C_ M <-> { ( f ` A ) , ( f ` B ) } C_ M ) ) |
|
| 10 | 9 6 | elrab2 | |- ( { ( f ` A ) , ( f ` B ) } e. L <-> ( { ( f ` A ) , ( f ` B ) } e. J /\ { ( f ` A ) , ( f ` B ) } C_ M ) ) |
| 11 | 10 | biimpi | |- ( { ( f ` A ) , ( f ` B ) } e. L -> ( { ( f ` A ) , ( f ` B ) } e. J /\ { ( f ` A ) , ( f ` B ) } C_ M ) ) |
| 12 | 11 | adantl | |- ( ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) -> ( { ( f ` A ) , ( f ` B ) } e. J /\ { ( f ` A ) , ( f ` B ) } C_ M ) ) |
| 13 | 12 | adantl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) -> ( { ( f ` A ) , ( f ` B ) } e. J /\ { ( f ` A ) , ( f ` B ) } C_ M ) ) |
| 14 | fvex | |- ( f ` A ) e. _V |
|
| 15 | fvex | |- ( f ` B ) e. _V |
|
| 16 | 14 15 | prss | |- ( ( ( f ` A ) e. M /\ ( f ` B ) e. M ) <-> { ( f ` A ) , ( f ` B ) } C_ M ) |
| 17 | uspgrupgr | |- ( H e. USPGraph -> H e. UPGraph ) |
|
| 18 | 17 | adantl | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> H e. UPGraph ) |
| 19 | 18 | 3ad2ant1 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> H e. UPGraph ) |
| 20 | 19 | ad2antrr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) -> H e. UPGraph ) |
| 21 | 4 | eleq2i | |- ( ( f ` A ) e. M <-> ( f ` A ) e. ( H ClNeighbVtx ( F ` A ) ) ) |
| 22 | 5 | clnbupgreli | |- ( ( H e. UPGraph /\ ( f ` A ) e. ( H ClNeighbVtx ( F ` A ) ) ) -> ( ( f ` A ) = ( F ` A ) \/ { ( f ` A ) , ( F ` A ) } e. J ) ) |
| 23 | 22 | ex | |- ( H e. UPGraph -> ( ( f ` A ) e. ( H ClNeighbVtx ( F ` A ) ) -> ( ( f ` A ) = ( F ` A ) \/ { ( f ` A ) , ( F ` A ) } e. J ) ) ) |
| 24 | 21 23 | biimtrid | |- ( H e. UPGraph -> ( ( f ` A ) e. M -> ( ( f ` A ) = ( F ` A ) \/ { ( f ` A ) , ( F ` A ) } e. J ) ) ) |
| 25 | 4 | eleq2i | |- ( ( f ` B ) e. M <-> ( f ` B ) e. ( H ClNeighbVtx ( F ` A ) ) ) |
| 26 | 5 | clnbupgreli | |- ( ( H e. UPGraph /\ ( f ` B ) e. ( H ClNeighbVtx ( F ` A ) ) ) -> ( ( f ` B ) = ( F ` A ) \/ { ( f ` B ) , ( F ` A ) } e. J ) ) |
| 27 | 26 | ex | |- ( H e. UPGraph -> ( ( f ` B ) e. ( H ClNeighbVtx ( F ` A ) ) -> ( ( f ` B ) = ( F ` A ) \/ { ( f ` B ) , ( F ` A ) } e. J ) ) ) |
| 28 | 25 27 | biimtrid | |- ( H e. UPGraph -> ( ( f ` B ) e. M -> ( ( f ` B ) = ( F ` A ) \/ { ( f ` B ) , ( F ` A ) } e. J ) ) ) |
| 29 | 24 28 | anim12d | |- ( H e. UPGraph -> ( ( ( f ` A ) e. M /\ ( f ` B ) e. M ) -> ( ( ( f ` A ) = ( F ` A ) \/ { ( f ` A ) , ( F ` A ) } e. J ) /\ ( ( f ` B ) = ( F ` A ) \/ { ( f ` B ) , ( F ` A ) } e. J ) ) ) ) |
| 30 | 20 29 | syl | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) -> ( ( ( f ` A ) e. M /\ ( f ` B ) e. M ) -> ( ( ( f ` A ) = ( F ` A ) \/ { ( f ` A ) , ( F ` A ) } e. J ) /\ ( ( f ` B ) = ( F ` A ) \/ { ( f ` B ) , ( F ` A ) } e. J ) ) ) ) |
| 31 | 30 | imp | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) -> ( ( ( f ` A ) = ( F ` A ) \/ { ( f ` A ) , ( F ` A ) } e. J ) /\ ( ( f ` B ) = ( F ` A ) \/ { ( f ` B ) , ( F ` A ) } e. J ) ) ) |
| 32 | prcom | |- { ( f ` A ) , ( f ` B ) } = { ( f ` B ) , ( f ` A ) } |
|
| 33 | preq1 | |- ( ( f ` B ) = ( F ` A ) -> { ( f ` B ) , ( f ` A ) } = { ( F ` A ) , ( f ` A ) } ) |
|
| 34 | 32 33 | eqtrid | |- ( ( f ` B ) = ( F ` A ) -> { ( f ` A ) , ( f ` B ) } = { ( F ` A ) , ( f ` A ) } ) |
| 35 | 34 | eleq1d | |- ( ( f ` B ) = ( F ` A ) -> ( { ( f ` A ) , ( f ` B ) } e. L <-> { ( F ` A ) , ( f ` A ) } e. L ) ) |
| 36 | 35 | biimpcd | |- ( { ( f ` A ) , ( f ` B ) } e. L -> ( ( f ` B ) = ( F ` A ) -> { ( F ` A ) , ( f ` A ) } e. L ) ) |
| 37 | 36 | adantl | |- ( ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) -> ( ( f ` B ) = ( F ` A ) -> { ( F ` A ) , ( f ` A ) } e. L ) ) |
| 38 | 37 | adantl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) -> ( ( f ` B ) = ( F ` A ) -> { ( F ` A ) , ( f ` A ) } e. L ) ) |
| 39 | 38 | ad2antrr | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) -> ( ( f ` B ) = ( F ` A ) -> { ( F ` A ) , ( f ` A ) } e. L ) ) |
| 40 | prcom | |- { ( f ` B ) , ( F ` A ) } = { ( F ` A ) , ( f ` B ) } |
|
| 41 | 40 | eleq1i | |- ( { ( f ` B ) , ( F ` A ) } e. J <-> { ( F ` A ) , ( f ` B ) } e. J ) |
| 42 | 41 | biimpi | |- ( { ( f ` B ) , ( F ` A ) } e. J -> { ( F ` A ) , ( f ` B ) } e. J ) |
| 43 | 42 | adantl | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) /\ { ( f ` B ) , ( F ` A ) } e. J ) -> { ( F ` A ) , ( f ` B ) } e. J ) |
| 44 | 20 | ad2antrr | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) /\ { ( f ` B ) , ( F ` A ) } e. J ) -> H e. UPGraph ) |
| 45 | fvex | |- ( F ` A ) e. _V |
|
| 46 | 15 45 | pm3.2i | |- ( ( f ` B ) e. _V /\ ( F ` A ) e. _V ) |
| 47 | 46 | a1i | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) /\ { ( f ` B ) , ( F ` A ) } e. J ) -> ( ( f ` B ) e. _V /\ ( F ` A ) e. _V ) ) |
| 48 | simpr | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) /\ { ( f ` B ) , ( F ` A ) } e. J ) -> { ( f ` B ) , ( F ` A ) } e. J ) |
|
| 49 | 44 47 48 | 3jca | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) /\ { ( f ` B ) , ( F ` A ) } e. J ) -> ( H e. UPGraph /\ ( ( f ` B ) e. _V /\ ( F ` A ) e. _V ) /\ { ( f ` B ) , ( F ` A ) } e. J ) ) |
| 50 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 51 | 50 5 | upgrpredgv | |- ( ( H e. UPGraph /\ ( ( f ` B ) e. _V /\ ( F ` A ) e. _V ) /\ { ( f ` B ) , ( F ` A ) } e. J ) -> ( ( f ` B ) e. ( Vtx ` H ) /\ ( F ` A ) e. ( Vtx ` H ) ) ) |
| 52 | simpr | |- ( ( ( f ` B ) e. ( Vtx ` H ) /\ ( F ` A ) e. ( Vtx ` H ) ) -> ( F ` A ) e. ( Vtx ` H ) ) |
|
| 53 | 49 51 52 | 3syl | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) /\ { ( f ` B ) , ( F ` A ) } e. J ) -> ( F ` A ) e. ( Vtx ` H ) ) |
| 54 | 50 | clnbgrvtxel | |- ( ( F ` A ) e. ( Vtx ` H ) -> ( F ` A ) e. ( H ClNeighbVtx ( F ` A ) ) ) |
| 55 | 4 | eleq2i | |- ( ( F ` A ) e. M <-> ( F ` A ) e. ( H ClNeighbVtx ( F ` A ) ) ) |
| 56 | 54 55 | sylibr | |- ( ( F ` A ) e. ( Vtx ` H ) -> ( F ` A ) e. M ) |
| 57 | 53 56 | syl | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) /\ { ( f ` B ) , ( F ` A ) } e. J ) -> ( F ` A ) e. M ) |
| 58 | simplrr | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) /\ { ( f ` B ) , ( F ` A ) } e. J ) -> ( f ` B ) e. M ) |
|
| 59 | 57 58 | prssd | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) /\ { ( f ` B ) , ( F ` A ) } e. J ) -> { ( F ` A ) , ( f ` B ) } C_ M ) |
| 60 | sseq1 | |- ( x = { ( F ` A ) , ( f ` B ) } -> ( x C_ M <-> { ( F ` A ) , ( f ` B ) } C_ M ) ) |
|
| 61 | 60 6 | elrab2 | |- ( { ( F ` A ) , ( f ` B ) } e. L <-> ( { ( F ` A ) , ( f ` B ) } e. J /\ { ( F ` A ) , ( f ` B ) } C_ M ) ) |
| 62 | 43 59 61 | sylanbrc | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) /\ { ( f ` B ) , ( F ` A ) } e. J ) -> { ( F ` A ) , ( f ` B ) } e. L ) |
| 63 | 62 | ex | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) -> ( { ( f ` B ) , ( F ` A ) } e. J -> { ( F ` A ) , ( f ` B ) } e. L ) ) |
| 64 | 39 63 | orim12d | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) -> ( ( ( f ` B ) = ( F ` A ) \/ { ( f ` B ) , ( F ` A ) } e. J ) -> ( { ( F ` A ) , ( f ` A ) } e. L \/ { ( F ` A ) , ( f ` B ) } e. L ) ) ) |
| 65 | 64 | imp | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) /\ ( ( f ` B ) = ( F ` A ) \/ { ( f ` B ) , ( F ` A ) } e. J ) ) -> ( { ( F ` A ) , ( f ` A ) } e. L \/ { ( F ` A ) , ( f ` B ) } e. L ) ) |
| 66 | 65 | orcomd | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) /\ ( ( f ` B ) = ( F ` A ) \/ { ( f ` B ) , ( F ` A ) } e. J ) ) -> ( { ( F ` A ) , ( f ` B ) } e. L \/ { ( F ` A ) , ( f ` A ) } e. L ) ) |
| 67 | 66 | ex | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) -> ( ( ( f ` B ) = ( F ` A ) \/ { ( f ` B ) , ( F ` A ) } e. J ) -> ( { ( F ` A ) , ( f ` B ) } e. L \/ { ( F ` A ) , ( f ` A ) } e. L ) ) ) |
| 68 | 67 | adantld | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) -> ( ( ( ( f ` A ) = ( F ` A ) \/ { ( f ` A ) , ( F ` A ) } e. J ) /\ ( ( f ` B ) = ( F ` A ) \/ { ( f ` B ) , ( F ` A ) } e. J ) ) -> ( { ( F ` A ) , ( f ` B ) } e. L \/ { ( F ` A ) , ( f ` A ) } e. L ) ) ) |
| 69 | 31 68 | mpd | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) /\ ( ( f ` A ) e. M /\ ( f ` B ) e. M ) ) -> ( { ( F ` A ) , ( f ` B ) } e. L \/ { ( F ` A ) , ( f ` A ) } e. L ) ) |
| 70 | 69 | ex | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) -> ( ( ( f ` A ) e. M /\ ( f ` B ) e. M ) -> ( { ( F ` A ) , ( f ` B ) } e. L \/ { ( F ` A ) , ( f ` A ) } e. L ) ) ) |
| 71 | 16 70 | biimtrrid | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) /\ { ( f ` A ) , ( f ` B ) } e. J ) -> ( { ( f ` A ) , ( f ` B ) } C_ M -> ( { ( F ` A ) , ( f ` B ) } e. L \/ { ( F ` A ) , ( f ` A ) } e. L ) ) ) |
| 72 | 71 | expimpd | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) -> ( ( { ( f ` A ) , ( f ` B ) } e. J /\ { ( f ` A ) , ( f ` B ) } C_ M ) -> ( { ( F ` A ) , ( f ` B ) } e. L \/ { ( F ` A ) , ( f ` A ) } e. L ) ) ) |
| 73 | 13 72 | mpd | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) -> ( { ( F ` A ) , ( f ` B ) } e. L \/ { ( F ` A ) , ( f ` A ) } e. L ) ) |
| 74 | 8 73 | jca | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) -> ( f : N -1-1-onto-> M /\ ( { ( F ` A ) , ( f ` B ) } e. L \/ { ( F ` A ) , ( f ` A ) } e. L ) ) ) |
| 75 | 74 | ex | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) -> ( f : N -1-1-onto-> M /\ ( { ( F ` A ) , ( f ` B ) } e. L \/ { ( F ` A ) , ( f ` A ) } e. L ) ) ) ) |
| 76 | 75 | eximdv | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) -> E. f ( f : N -1-1-onto-> M /\ ( { ( F ` A ) , ( f ` B ) } e. L \/ { ( F ` A ) , ( f ` A ) } e. L ) ) ) ) |
| 77 | 7 76 | mpd | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f ( f : N -1-1-onto-> M /\ ( { ( F ` A ) , ( f ` B ) } e. L \/ { ( F ` A ) , ( f ` A ) } e. L ) ) ) |