This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph local isomorphism is symmetric for hypergraphs. (Contributed by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grlicsym | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ≃𝑙𝑔𝑟 𝑆 → 𝑆 ≃𝑙𝑔𝑟 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 3 | 1 2 | grilcbri | ⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝑆 → ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) |
| 4 | grlicrcl | ⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝑆 → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) | |
| 5 | vex | ⊢ 𝑓 ∈ V | |
| 6 | cnvexg | ⊢ ( 𝑓 ∈ V → ◡ 𝑓 ∈ V ) | |
| 7 | 5 6 | mp1i | ⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ) → ◡ 𝑓 ∈ V ) |
| 8 | f1ocnv | ⊢ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) → ◡ 𝑓 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ) | |
| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ) → ◡ 𝑓 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ) |
| 10 | f1ocnvdm | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ) → ( ◡ 𝑓 ‘ 𝑤 ) ∈ ( Vtx ‘ 𝐺 ) ) | |
| 11 | 10 | 3adant3 | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( ◡ 𝑓 ‘ 𝑤 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 12 | oveq2 | ⊢ ( 𝑣 = ( ◡ 𝑓 ‘ 𝑤 ) → ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) | |
| 13 | 12 | oveq2d | ⊢ ( 𝑣 = ( ◡ 𝑓 ‘ 𝑤 ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) = ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) |
| 14 | fveq2 | ⊢ ( 𝑣 = ( ◡ 𝑓 ‘ 𝑤 ) → ( 𝑓 ‘ 𝑣 ) = ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑣 = ( ◡ 𝑓 ‘ 𝑤 ) → ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) = ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) |
| 16 | 15 | oveq2d | ⊢ ( 𝑣 = ( ◡ 𝑓 ‘ 𝑤 ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) = ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 17 | 13 16 | breq12d | ⊢ ( 𝑣 = ( ◡ 𝑓 ‘ 𝑤 ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ↔ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) ) |
| 18 | 17 | rspcv | ⊢ ( ( ◡ 𝑓 ‘ 𝑤 ) ∈ ( Vtx ‘ 𝐺 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) ) |
| 19 | 11 18 | syl | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) ) |
| 20 | f1ocnvfv2 | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) = 𝑤 ) | |
| 21 | 20 | 3adant3 | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) = 𝑤 ) |
| 22 | 21 | oveq2d | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) = ( 𝑆 ClNeighbVtx 𝑤 ) ) |
| 23 | 22 | oveq2d | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) = ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ) |
| 24 | 23 | breq2d | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ↔ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ) ) |
| 25 | simp3 | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → 𝐺 ∈ UHGraph ) | |
| 26 | 1 | clnbgrssvtx | ⊢ ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ⊆ ( Vtx ‘ 𝐺 ) |
| 27 | 1 | isubgruhgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ∈ UHGraph ) |
| 28 | 25 26 27 | sylancl | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ∈ UHGraph ) |
| 29 | gricsym | ⊢ ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ∈ UHGraph → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 31 | 24 30 | sylbid | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 32 | 19 31 | syld | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 33 | 32 | 3exp | ⊢ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) → ( 𝑤 ∈ ( Vtx ‘ 𝑆 ) → ( 𝐺 ∈ UHGraph → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) ) ) |
| 34 | 33 | com24 | ⊢ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) → ( 𝐺 ∈ UHGraph → ( 𝑤 ∈ ( Vtx ‘ 𝑆 ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) ) ) |
| 35 | 34 | imp31 | ⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ) → ( 𝑤 ∈ ( Vtx ‘ 𝑆 ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 36 | 35 | ralrimiv | ⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ) → ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) |
| 37 | 9 36 | jca | ⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ) → ( ◡ 𝑓 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 38 | f1oeq1 | ⊢ ( 𝑔 = ◡ 𝑓 → ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ↔ ◡ 𝑓 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ) ) | |
| 39 | fveq1 | ⊢ ( 𝑔 = ◡ 𝑓 → ( 𝑔 ‘ 𝑤 ) = ( ◡ 𝑓 ‘ 𝑤 ) ) | |
| 40 | 39 | oveq2d | ⊢ ( 𝑔 = ◡ 𝑓 → ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) = ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) |
| 41 | 40 | oveq2d | ⊢ ( 𝑔 = ◡ 𝑓 → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) = ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) |
| 42 | 41 | breq2d | ⊢ ( 𝑔 = ◡ 𝑓 → ( ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ↔ ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 43 | 42 | ralbidv | ⊢ ( 𝑔 = ◡ 𝑓 → ( ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ↔ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 44 | 38 43 | anbi12d | ⊢ ( 𝑔 = ◡ 𝑓 → ( ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ) ↔ ( ◡ 𝑓 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) ) |
| 45 | 7 37 44 | spcedv | ⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ) → ∃ 𝑔 ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ) ) |
| 46 | 45 | 3adant3 | ⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ∧ ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) → ∃ 𝑔 ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ) ) |
| 47 | 2 1 | dfgrlic2 | ⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( 𝑆 ≃𝑙𝑔𝑟 𝐺 ↔ ∃ 𝑔 ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ) ) ) |
| 48 | 47 | ancoms | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑆 ≃𝑙𝑔𝑟 𝐺 ↔ ∃ 𝑔 ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ) ) ) |
| 49 | 48 | 3ad2ant3 | ⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ∧ ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) → ( 𝑆 ≃𝑙𝑔𝑟 𝐺 ↔ ∃ 𝑔 ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ) ) ) |
| 50 | 46 49 | mpbird | ⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ∧ ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) → 𝑆 ≃𝑙𝑔𝑟 𝐺 ) |
| 51 | 50 | 3exp | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) → ( 𝐺 ∈ UHGraph → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → 𝑆 ≃𝑙𝑔𝑟 𝐺 ) ) ) |
| 52 | 51 | com23 | ⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐺 ∈ UHGraph → 𝑆 ≃𝑙𝑔𝑟 𝐺 ) ) ) |
| 53 | 52 | exlimiv | ⊢ ( ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐺 ∈ UHGraph → 𝑆 ≃𝑙𝑔𝑟 𝐺 ) ) ) |
| 54 | 3 4 53 | sylc | ⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝑆 → ( 𝐺 ∈ UHGraph → 𝑆 ≃𝑙𝑔𝑟 𝐺 ) ) |
| 55 | 54 | com12 | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ≃𝑙𝑔𝑟 𝑆 → 𝑆 ≃𝑙𝑔𝑟 𝐺 ) ) |