This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgrlic2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| dfgrlic2.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| Assertion | dfgrlic2 | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrlic2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | dfgrlic2.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | brgrlic | ⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ( 𝐺 GraphLocIso 𝐻 ) ≠ ∅ ) | |
| 4 | n0 | ⊢ ( ( 𝐺 GraphLocIso 𝐻 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) | |
| 5 | 3 4 | bitri | ⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |
| 6 | 1 2 | isgrlim | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝑓 ∈ V ) → ( 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |
| 7 | 6 | el3v3 | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |
| 8 | 7 | exbidv | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |
| 9 | 5 8 | bitrid | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) ) |