This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph local isomorphism is symmetric for hypergraphs. (Contributed by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grlicsym | |- ( G e. UHGraph -> ( G ~=lgr S -> S ~=lgr G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( Vtx ` S ) = ( Vtx ` S ) |
|
| 3 | 1 2 | grilcbri | |- ( G ~=lgr S -> E. f ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) ) |
| 4 | grlicrcl | |- ( G ~=lgr S -> ( G e. _V /\ S e. _V ) ) |
|
| 5 | vex | |- f e. _V |
|
| 6 | cnvexg | |- ( f e. _V -> `' f e. _V ) |
|
| 7 | 5 6 | mp1i | |- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph ) -> `' f e. _V ) |
| 8 | f1ocnv | |- ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) -> `' f : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) ) |
|
| 9 | 8 | ad2antrr | |- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph ) -> `' f : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) ) |
| 10 | f1ocnvdm | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) ) -> ( `' f ` w ) e. ( Vtx ` G ) ) |
|
| 11 | 10 | 3adant3 | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( `' f ` w ) e. ( Vtx ` G ) ) |
| 12 | oveq2 | |- ( v = ( `' f ` w ) -> ( G ClNeighbVtx v ) = ( G ClNeighbVtx ( `' f ` w ) ) ) |
|
| 13 | 12 | oveq2d | |- ( v = ( `' f ` w ) -> ( G ISubGr ( G ClNeighbVtx v ) ) = ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) |
| 14 | fveq2 | |- ( v = ( `' f ` w ) -> ( f ` v ) = ( f ` ( `' f ` w ) ) ) |
|
| 15 | 14 | oveq2d | |- ( v = ( `' f ` w ) -> ( S ClNeighbVtx ( f ` v ) ) = ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) |
| 16 | 15 | oveq2d | |- ( v = ( `' f ` w ) -> ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) = ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) ) |
| 17 | 13 16 | breq12d | |- ( v = ( `' f ` w ) -> ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) <-> ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) ) ) |
| 18 | 17 | rspcv | |- ( ( `' f ` w ) e. ( Vtx ` G ) -> ( A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) -> ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) ) ) |
| 19 | 11 18 | syl | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) -> ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) ) ) |
| 20 | f1ocnvfv2 | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) ) -> ( f ` ( `' f ` w ) ) = w ) |
|
| 21 | 20 | 3adant3 | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( f ` ( `' f ` w ) ) = w ) |
| 22 | 21 | oveq2d | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) = ( S ClNeighbVtx w ) ) |
| 23 | 22 | oveq2d | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) = ( S ISubGr ( S ClNeighbVtx w ) ) ) |
| 24 | 23 | breq2d | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) <-> ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx w ) ) ) ) |
| 25 | simp3 | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> G e. UHGraph ) |
|
| 26 | 1 | clnbgrssvtx | |- ( G ClNeighbVtx ( `' f ` w ) ) C_ ( Vtx ` G ) |
| 27 | 1 | isubgruhgr | |- ( ( G e. UHGraph /\ ( G ClNeighbVtx ( `' f ` w ) ) C_ ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) e. UHGraph ) |
| 28 | 25 26 27 | sylancl | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) e. UHGraph ) |
| 29 | gricsym | |- ( ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) e. UHGraph -> ( ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx w ) ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
|
| 30 | 28 29 | syl | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx w ) ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
| 31 | 24 30 | sylbid | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` ( `' f ` w ) ) ) ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
| 32 | 19 31 | syld | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ w e. ( Vtx ` S ) /\ G e. UHGraph ) -> ( A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
| 33 | 32 | 3exp | |- ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) -> ( w e. ( Vtx ` S ) -> ( G e. UHGraph -> ( A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) ) ) |
| 34 | 33 | com24 | |- ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) -> ( A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) -> ( G e. UHGraph -> ( w e. ( Vtx ` S ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) ) ) |
| 35 | 34 | imp31 | |- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph ) -> ( w e. ( Vtx ` S ) -> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
| 36 | 35 | ralrimiv | |- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph ) -> A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) |
| 37 | 9 36 | jca | |- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph ) -> ( `' f : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
| 38 | f1oeq1 | |- ( g = `' f -> ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) <-> `' f : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) ) ) |
|
| 39 | fveq1 | |- ( g = `' f -> ( g ` w ) = ( `' f ` w ) ) |
|
| 40 | 39 | oveq2d | |- ( g = `' f -> ( G ClNeighbVtx ( g ` w ) ) = ( G ClNeighbVtx ( `' f ` w ) ) ) |
| 41 | 40 | oveq2d | |- ( g = `' f -> ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) = ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) |
| 42 | 41 | breq2d | |- ( g = `' f -> ( ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) <-> ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
| 43 | 42 | ralbidv | |- ( g = `' f -> ( A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) <-> A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) |
| 44 | 38 43 | anbi12d | |- ( g = `' f -> ( ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) ) <-> ( `' f : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( `' f ` w ) ) ) ) ) ) |
| 45 | 7 37 44 | spcedv | |- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph ) -> E. g ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) ) ) |
| 46 | 45 | 3adant3 | |- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph /\ ( G e. _V /\ S e. _V ) ) -> E. g ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) ) ) |
| 47 | 2 1 | dfgrlic2 | |- ( ( S e. _V /\ G e. _V ) -> ( S ~=lgr G <-> E. g ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) ) ) ) |
| 48 | 47 | ancoms | |- ( ( G e. _V /\ S e. _V ) -> ( S ~=lgr G <-> E. g ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) ) ) ) |
| 49 | 48 | 3ad2ant3 | |- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph /\ ( G e. _V /\ S e. _V ) ) -> ( S ~=lgr G <-> E. g ( g : ( Vtx ` S ) -1-1-onto-> ( Vtx ` G ) /\ A. w e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx w ) ) ~=gr ( G ISubGr ( G ClNeighbVtx ( g ` w ) ) ) ) ) ) |
| 50 | 46 49 | mpbird | |- ( ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) /\ G e. UHGraph /\ ( G e. _V /\ S e. _V ) ) -> S ~=lgr G ) |
| 51 | 50 | 3exp | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) -> ( G e. UHGraph -> ( ( G e. _V /\ S e. _V ) -> S ~=lgr G ) ) ) |
| 52 | 51 | com23 | |- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) -> ( ( G e. _V /\ S e. _V ) -> ( G e. UHGraph -> S ~=lgr G ) ) ) |
| 53 | 52 | exlimiv | |- ( E. f ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` S ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( f ` v ) ) ) ) -> ( ( G e. _V /\ S e. _V ) -> ( G e. UHGraph -> S ~=lgr G ) ) ) |
| 54 | 3 4 53 | sylc | |- ( G ~=lgr S -> ( G e. UHGraph -> S ~=lgr G ) ) |
| 55 | 54 | com12 | |- ( G e. UHGraph -> ( G ~=lgr S -> S ~=lgr G ) ) |