This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An induced subgraph of a hypergraph is a hypergraph. (Contributed by AV, 13-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isubgrvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | isubgruhgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) ∈ UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgrvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | uhgrf | ⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 5 | dmresss | ⊢ dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⊆ dom ( iEdg ‘ 𝐺 ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⊆ dom ( iEdg ‘ 𝐺 ) ) |
| 7 | imadmres | ⊢ ( ( iEdg ‘ 𝐺 ) “ dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ) = ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) | |
| 8 | ffvelcdm | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) | |
| 9 | eldifsni | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ≠ ∅ ) | |
| 10 | 8 9 | syl | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ≠ ∅ ) |
| 11 | 10 | ex | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ≠ ∅ ) ) |
| 12 | 3 11 | syl | ⊢ ( 𝐺 ∈ UHGraph → ( 𝑦 ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ≠ ∅ ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ≠ ∅ ) ) |
| 14 | 13 | imp | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ≠ ∅ ) |
| 15 | fvexd | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ⊆ 𝑆 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ V ) | |
| 16 | id | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ⊆ 𝑆 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ⊆ 𝑆 ) | |
| 17 | 15 16 | elpwd | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ⊆ 𝑆 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝒫 𝑆 ) |
| 18 | 14 17 | anim12ci | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ⊆ 𝑆 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝒫 𝑆 ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ≠ ∅ ) ) |
| 19 | eldifsn | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( 𝒫 𝑆 ∖ { ∅ } ) ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝒫 𝑆 ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ≠ ∅ ) ) | |
| 20 | 18 19 | sylibr | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ⊆ 𝑆 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( 𝒫 𝑆 ∖ { ∅ } ) ) |
| 21 | 20 | ex | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ⊆ 𝑆 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( 𝒫 𝑆 ∖ { ∅ } ) ) ) |
| 22 | 21 | ralrimiva | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ∀ 𝑦 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ⊆ 𝑆 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( 𝒫 𝑆 ∖ { ∅ } ) ) ) |
| 23 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ) | |
| 24 | 23 | sseq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ⊆ 𝑆 ) ) |
| 25 | 24 | ralrab | ⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( 𝒫 𝑆 ∖ { ∅ } ) ↔ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ⊆ 𝑆 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( 𝒫 𝑆 ∖ { ∅ } ) ) ) |
| 26 | 22 25 | sylibr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ∀ 𝑦 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( 𝒫 𝑆 ∖ { ∅ } ) ) |
| 27 | ffun | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → Fun ( iEdg ‘ 𝐺 ) ) | |
| 28 | ssrab2 | ⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ⊆ dom ( iEdg ‘ 𝐺 ) | |
| 29 | 27 28 | jctir | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → ( Fun ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ⊆ dom ( iEdg ‘ 𝐺 ) ) ) |
| 30 | 3 29 | syl | ⊢ ( 𝐺 ∈ UHGraph → ( Fun ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ⊆ dom ( iEdg ‘ 𝐺 ) ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( Fun ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ⊆ dom ( iEdg ‘ 𝐺 ) ) ) |
| 32 | funimass4 | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ⊆ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⊆ ( 𝒫 𝑆 ∖ { ∅ } ) ↔ ∀ 𝑦 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( 𝒫 𝑆 ∖ { ∅ } ) ) ) | |
| 33 | 31 32 | syl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⊆ ( 𝒫 𝑆 ∖ { ∅ } ) ↔ ∀ 𝑦 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( 𝒫 𝑆 ∖ { ∅ } ) ) ) |
| 34 | 26 33 | mpbird | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⊆ ( 𝒫 𝑆 ∖ { ∅ } ) ) |
| 35 | 7 34 | eqsstrid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ( iEdg ‘ 𝐺 ) “ dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ) ⊆ ( 𝒫 𝑆 ∖ { ∅ } ) ) |
| 36 | 4 6 35 | fssrescdmd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ( iEdg ‘ 𝐺 ) ↾ dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ) : dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⟶ ( 𝒫 𝑆 ∖ { ∅ } ) ) |
| 37 | resdmres | ⊢ ( ( iEdg ‘ 𝐺 ) ↾ dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ) = ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) | |
| 38 | 37 | eqcomi | ⊢ ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 39 | 38 | feq1i | ⊢ ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) : dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⟶ ( 𝒫 𝑆 ∖ { ∅ } ) ↔ ( ( iEdg ‘ 𝐺 ) ↾ dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ) : dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⟶ ( 𝒫 𝑆 ∖ { ∅ } ) ) |
| 40 | 36 39 | sylibr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) : dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⟶ ( 𝒫 𝑆 ∖ { ∅ } ) ) |
| 41 | 1 2 | isubgriedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 42 | 41 | dmeqd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → dom ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 43 | 1 | isubgrvtx | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = 𝑆 ) |
| 44 | 43 | pweqd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → 𝒫 ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = 𝒫 𝑆 ) |
| 45 | 44 | difeq1d | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝒫 ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ∖ { ∅ } ) = ( 𝒫 𝑆 ∖ { ∅ } ) ) |
| 46 | 41 42 45 | feq123d | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) ⟶ ( 𝒫 ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ∖ { ∅ } ) ↔ ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) : dom ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⟶ ( 𝒫 𝑆 ∖ { ∅ } ) ) ) |
| 47 | 40 46 | mpbird | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) ⟶ ( 𝒫 ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ∖ { ∅ } ) ) |
| 48 | ovexd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) ∈ V ) | |
| 49 | eqid | ⊢ ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) | |
| 50 | eqid | ⊢ ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) | |
| 51 | 49 50 | isuhgr | ⊢ ( ( 𝐺 ISubGr 𝑆 ) ∈ V → ( ( 𝐺 ISubGr 𝑆 ) ∈ UHGraph ↔ ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) ⟶ ( 𝒫 ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ∖ { ∅ } ) ) ) |
| 52 | 48 51 | syl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ( 𝐺 ISubGr 𝑆 ) ∈ UHGraph ↔ ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) ⟶ ( 𝒫 ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ∖ { ∅ } ) ) ) |
| 53 | 47 52 | mpbird | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) ∈ UHGraph ) |