This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphism is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022) (Revised by AV, 3-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gricsym | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ≃𝑔𝑟 𝑆 → 𝑆 ≃𝑔𝑟 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric | ⊢ ( 𝐺 ≃𝑔𝑟 𝑆 ↔ ( 𝐺 GraphIso 𝑆 ) ≠ ∅ ) | |
| 2 | n0 | ⊢ ( ( 𝐺 GraphIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( 𝐺 ≃𝑔𝑟 𝑆 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) ) |
| 4 | grimcnv | ⊢ ( 𝐺 ∈ UHGraph → ( 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) → ◡ 𝑓 ∈ ( 𝑆 GraphIso 𝐺 ) ) ) | |
| 5 | brgrici | ⊢ ( ◡ 𝑓 ∈ ( 𝑆 GraphIso 𝐺 ) → 𝑆 ≃𝑔𝑟 𝐺 ) | |
| 6 | 4 5 | syl6 | ⊢ ( 𝐺 ∈ UHGraph → ( 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) → 𝑆 ≃𝑔𝑟 𝐺 ) ) |
| 7 | 6 | exlimdv | ⊢ ( 𝐺 ∈ UHGraph → ( ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) → 𝑆 ≃𝑔𝑟 𝐺 ) ) |
| 8 | 3 7 | biimtrid | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ≃𝑔𝑟 𝑆 → 𝑆 ≃𝑔𝑟 𝐺 ) ) |