This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mhmeql | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 3 | 1 2 | mhmf | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 5 | 4 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 6 | 1 2 | mhmf | ⊢ ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 8 | 7 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐺 Fn ( Base ‘ 𝑆 ) ) |
| 9 | fndmin | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝐺 Fn ( Base ‘ 𝑆 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) | |
| 10 | 5 8 9 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
| 11 | ssrab2 | ⊢ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ⊆ ( Base ‘ 𝑆 ) | |
| 12 | 11 | a1i | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ⊆ ( Base ‘ 𝑆 ) ) |
| 13 | fveq2 | ⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) | |
| 14 | fveq2 | ⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
| 16 | mhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑆 ∈ Mnd ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑆 ∈ Mnd ) |
| 18 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 19 | 1 18 | mndidcl | ⊢ ( 𝑆 ∈ Mnd → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 20 | 17 19 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 21 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 22 | 18 21 | mhm0 | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 24 | 18 21 | mhm0 | ⊢ ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 26 | 23 25 | eqtr4d | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) |
| 27 | 15 20 26 | elrabd | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 0g ‘ 𝑆 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
| 28 | fveq2 | ⊢ ( 𝑧 = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) | |
| 29 | fveq2 | ⊢ ( 𝑧 = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) | |
| 30 | 28 29 | eqeq12d | ⊢ ( 𝑧 = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) ) |
| 31 | 17 | ad2antrr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑆 ∈ Mnd ) |
| 32 | simplrl | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) | |
| 33 | simprl | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) | |
| 34 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 35 | 1 34 | mndcl | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 36 | 31 32 33 35 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 37 | simplll | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) | |
| 38 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 39 | 1 34 38 | mhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 40 | 37 32 33 39 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 41 | simpllr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) | |
| 42 | 1 34 38 | mhmlin | ⊢ ( ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 43 | 41 32 33 42 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 44 | simplrr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 45 | simprr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 46 | 44 45 | oveq12d | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 47 | 43 46 | eqtr4d | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 48 | 40 47 | eqtr4d | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) |
| 49 | 30 36 48 | elrabd | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
| 50 | 49 | expr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
| 51 | 50 | ralrimiva | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
| 52 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 53 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 54 | 52 53 | eqeq12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
| 55 | 54 | ralrab | ⊢ ( ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
| 56 | 51 55 | sylibr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
| 57 | 56 | expr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
| 58 | 57 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
| 59 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 60 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 61 | 59 60 | eqeq12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 62 | 61 | ralrab | ⊢ ( ∀ 𝑥 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
| 63 | 58 62 | sylibr | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ∀ 𝑥 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
| 64 | 1 18 34 | issubm | ⊢ ( 𝑆 ∈ Mnd → ( { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∈ ( SubMnd ‘ 𝑆 ) ↔ ( { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ⊆ ( Base ‘ 𝑆 ) ∧ ( 0g ‘ 𝑆 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∧ ∀ 𝑥 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) ) |
| 65 | 17 64 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∈ ( SubMnd ‘ 𝑆 ) ↔ ( { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ⊆ ( Base ‘ 𝑆 ) ∧ ( 0g ‘ 𝑆 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∧ ∀ 𝑥 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) ) |
| 66 | 12 27 63 65 | mpbir3and | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∈ ( SubMnd ‘ 𝑆 ) ) |
| 67 | 10 66 | eqeltrd | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ 𝑆 ) ) |