This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the finite geometric series 1 + 2 + 4 + 8 + ... + 2 ^ ( N - 1 ) . (Contributed by Mario Carneiro, 7-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geo2sum2 | ⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 2 ↑ 𝑘 ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 2 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 4 | 3 | sumeq1d | ⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 2 ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 2 ↑ 𝑘 ) ) |
| 5 | 2cn | ⊢ 2 ∈ ℂ | |
| 6 | 5 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℂ ) |
| 7 | 1ne2 | ⊢ 1 ≠ 2 | |
| 8 | 7 | necomi | ⊢ 2 ≠ 1 |
| 9 | 8 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 2 ≠ 1 ) |
| 10 | id | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0 ) | |
| 11 | 6 9 10 | geoser | ⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 2 ↑ 𝑘 ) = ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) ) |
| 12 | 6 10 | expcld | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
| 13 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 14 | 13 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℂ ) |
| 15 | 12 14 | subcld | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ 𝑁 ) − 1 ) ∈ ℂ ) |
| 16 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 17 | 16 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 1 ≠ 0 ) |
| 18 | 15 14 17 | div2negd | ⊢ ( 𝑁 ∈ ℕ0 → ( - ( ( 2 ↑ 𝑁 ) − 1 ) / - 1 ) = ( ( ( 2 ↑ 𝑁 ) − 1 ) / 1 ) ) |
| 19 | 12 14 | negsubdi2d | ⊢ ( 𝑁 ∈ ℕ0 → - ( ( 2 ↑ 𝑁 ) − 1 ) = ( 1 − ( 2 ↑ 𝑁 ) ) ) |
| 20 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 21 | 20 | negeqi | ⊢ - ( 2 − 1 ) = - 1 |
| 22 | 5 13 | negsubdi2i | ⊢ - ( 2 − 1 ) = ( 1 − 2 ) |
| 23 | 21 22 | eqtr3i | ⊢ - 1 = ( 1 − 2 ) |
| 24 | 23 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → - 1 = ( 1 − 2 ) ) |
| 25 | 19 24 | oveq12d | ⊢ ( 𝑁 ∈ ℕ0 → ( - ( ( 2 ↑ 𝑁 ) − 1 ) / - 1 ) = ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) ) |
| 26 | 15 | div1d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ 𝑁 ) − 1 ) / 1 ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |
| 27 | 18 25 26 | 3eqtr3d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |
| 28 | 4 11 27 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 2 ↑ 𝑘 ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |