This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A composite integer greater than or equal to 2 is greater than or equal to 4 . (Contributed by AV, 5-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ge2nprmge4 | ⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∉ ℙ ) → 𝑋 ∈ ( ℤ≥ ‘ 4 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b2 | ⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ) | |
| 2 | 4z | ⊢ 4 ∈ ℤ | |
| 3 | 2 | a1i | ⊢ ( ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ∧ 𝑋 ∉ ℙ ) → 4 ∈ ℤ ) |
| 4 | nnz | ⊢ ( 𝑋 ∈ ℕ → 𝑋 ∈ ℤ ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ∧ 𝑋 ∉ ℙ ) → 𝑋 ∈ ℤ ) |
| 6 | 1z | ⊢ 1 ∈ ℤ | |
| 7 | zltp1le | ⊢ ( ( 1 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 1 < 𝑋 ↔ ( 1 + 1 ) ≤ 𝑋 ) ) | |
| 8 | 6 4 7 | sylancr | ⊢ ( 𝑋 ∈ ℕ → ( 1 < 𝑋 ↔ ( 1 + 1 ) ≤ 𝑋 ) ) |
| 9 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 10 | 9 | breq1i | ⊢ ( ( 1 + 1 ) ≤ 𝑋 ↔ 2 ≤ 𝑋 ) |
| 11 | 8 10 | bitrdi | ⊢ ( 𝑋 ∈ ℕ → ( 1 < 𝑋 ↔ 2 ≤ 𝑋 ) ) |
| 12 | 2re | ⊢ 2 ∈ ℝ | |
| 13 | nnre | ⊢ ( 𝑋 ∈ ℕ → 𝑋 ∈ ℝ ) | |
| 14 | leloe | ⊢ ( ( 2 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 2 ≤ 𝑋 ↔ ( 2 < 𝑋 ∨ 2 = 𝑋 ) ) ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( 𝑋 ∈ ℕ → ( 2 ≤ 𝑋 ↔ ( 2 < 𝑋 ∨ 2 = 𝑋 ) ) ) |
| 16 | 2z | ⊢ 2 ∈ ℤ | |
| 17 | zltp1le | ⊢ ( ( 2 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 2 < 𝑋 ↔ ( 2 + 1 ) ≤ 𝑋 ) ) | |
| 18 | 16 4 17 | sylancr | ⊢ ( 𝑋 ∈ ℕ → ( 2 < 𝑋 ↔ ( 2 + 1 ) ≤ 𝑋 ) ) |
| 19 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 20 | 19 | breq1i | ⊢ ( ( 2 + 1 ) ≤ 𝑋 ↔ 3 ≤ 𝑋 ) |
| 21 | 18 20 | bitrdi | ⊢ ( 𝑋 ∈ ℕ → ( 2 < 𝑋 ↔ 3 ≤ 𝑋 ) ) |
| 22 | 3re | ⊢ 3 ∈ ℝ | |
| 23 | leloe | ⊢ ( ( 3 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 3 ≤ 𝑋 ↔ ( 3 < 𝑋 ∨ 3 = 𝑋 ) ) ) | |
| 24 | 22 13 23 | sylancr | ⊢ ( 𝑋 ∈ ℕ → ( 3 ≤ 𝑋 ↔ ( 3 < 𝑋 ∨ 3 = 𝑋 ) ) ) |
| 25 | df-4 | ⊢ 4 = ( 3 + 1 ) | |
| 26 | 3z | ⊢ 3 ∈ ℤ | |
| 27 | zltp1le | ⊢ ( ( 3 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 3 < 𝑋 ↔ ( 3 + 1 ) ≤ 𝑋 ) ) | |
| 28 | 26 4 27 | sylancr | ⊢ ( 𝑋 ∈ ℕ → ( 3 < 𝑋 ↔ ( 3 + 1 ) ≤ 𝑋 ) ) |
| 29 | 28 | biimpa | ⊢ ( ( 𝑋 ∈ ℕ ∧ 3 < 𝑋 ) → ( 3 + 1 ) ≤ 𝑋 ) |
| 30 | 25 29 | eqbrtrid | ⊢ ( ( 𝑋 ∈ ℕ ∧ 3 < 𝑋 ) → 4 ≤ 𝑋 ) |
| 31 | 30 | a1d | ⊢ ( ( 𝑋 ∈ ℕ ∧ 3 < 𝑋 ) → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 32 | 31 | ex | ⊢ ( 𝑋 ∈ ℕ → ( 3 < 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 33 | neleq1 | ⊢ ( 𝑋 = 3 → ( 𝑋 ∉ ℙ ↔ 3 ∉ ℙ ) ) | |
| 34 | 33 | eqcoms | ⊢ ( 3 = 𝑋 → ( 𝑋 ∉ ℙ ↔ 3 ∉ ℙ ) ) |
| 35 | 3prm | ⊢ 3 ∈ ℙ | |
| 36 | pm2.24nel | ⊢ ( 3 ∈ ℙ → ( 3 ∉ ℙ → 4 ≤ 𝑋 ) ) | |
| 37 | 35 36 | mp1i | ⊢ ( 3 = 𝑋 → ( 3 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 38 | 34 37 | sylbid | ⊢ ( 3 = 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 39 | 38 | a1i | ⊢ ( 𝑋 ∈ ℕ → ( 3 = 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 40 | 32 39 | jaod | ⊢ ( 𝑋 ∈ ℕ → ( ( 3 < 𝑋 ∨ 3 = 𝑋 ) → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 41 | 24 40 | sylbid | ⊢ ( 𝑋 ∈ ℕ → ( 3 ≤ 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 42 | 21 41 | sylbid | ⊢ ( 𝑋 ∈ ℕ → ( 2 < 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 43 | neleq1 | ⊢ ( 𝑋 = 2 → ( 𝑋 ∉ ℙ ↔ 2 ∉ ℙ ) ) | |
| 44 | 43 | eqcoms | ⊢ ( 2 = 𝑋 → ( 𝑋 ∉ ℙ ↔ 2 ∉ ℙ ) ) |
| 45 | 2prm | ⊢ 2 ∈ ℙ | |
| 46 | pm2.24nel | ⊢ ( 2 ∈ ℙ → ( 2 ∉ ℙ → 4 ≤ 𝑋 ) ) | |
| 47 | 45 46 | mp1i | ⊢ ( 2 = 𝑋 → ( 2 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 48 | 44 47 | sylbid | ⊢ ( 2 = 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 49 | 48 | a1i | ⊢ ( 𝑋 ∈ ℕ → ( 2 = 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 50 | 42 49 | jaod | ⊢ ( 𝑋 ∈ ℕ → ( ( 2 < 𝑋 ∨ 2 = 𝑋 ) → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 51 | 15 50 | sylbid | ⊢ ( 𝑋 ∈ ℕ → ( 2 ≤ 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 52 | 11 51 | sylbid | ⊢ ( 𝑋 ∈ ℕ → ( 1 < 𝑋 → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) ) |
| 53 | 52 | imp | ⊢ ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) → ( 𝑋 ∉ ℙ → 4 ≤ 𝑋 ) ) |
| 54 | 53 | imp | ⊢ ( ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ∧ 𝑋 ∉ ℙ ) → 4 ≤ 𝑋 ) |
| 55 | 3 5 54 | 3jca | ⊢ ( ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) ∧ 𝑋 ∉ ℙ ) → ( 4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋 ) ) |
| 56 | 55 | ex | ⊢ ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) → ( 𝑋 ∉ ℙ → ( 4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋 ) ) ) |
| 57 | eluz2 | ⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 4 ) ↔ ( 4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋 ) ) | |
| 58 | 56 57 | imbitrrdi | ⊢ ( ( 𝑋 ∈ ℕ ∧ 1 < 𝑋 ) → ( 𝑋 ∉ ℙ → 𝑋 ∈ ( ℤ≥ ‘ 4 ) ) ) |
| 59 | 1 58 | sylbi | ⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑋 ∉ ℙ → 𝑋 ∈ ( ℤ≥ ‘ 4 ) ) ) |
| 60 | 59 | imp | ⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∉ ℙ ) → 𝑋 ∈ ( ℤ≥ ‘ 4 ) ) |