This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A composite integer greater than or equal to 2 is greater than or equal to 4 . (Contributed by AV, 5-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ge2nprmge4 | |- ( ( X e. ( ZZ>= ` 2 ) /\ X e/ Prime ) -> X e. ( ZZ>= ` 4 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b2 | |- ( X e. ( ZZ>= ` 2 ) <-> ( X e. NN /\ 1 < X ) ) |
|
| 2 | 4z | |- 4 e. ZZ |
|
| 3 | 2 | a1i | |- ( ( ( X e. NN /\ 1 < X ) /\ X e/ Prime ) -> 4 e. ZZ ) |
| 4 | nnz | |- ( X e. NN -> X e. ZZ ) |
|
| 5 | 4 | ad2antrr | |- ( ( ( X e. NN /\ 1 < X ) /\ X e/ Prime ) -> X e. ZZ ) |
| 6 | 1z | |- 1 e. ZZ |
|
| 7 | zltp1le | |- ( ( 1 e. ZZ /\ X e. ZZ ) -> ( 1 < X <-> ( 1 + 1 ) <_ X ) ) |
|
| 8 | 6 4 7 | sylancr | |- ( X e. NN -> ( 1 < X <-> ( 1 + 1 ) <_ X ) ) |
| 9 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 10 | 9 | breq1i | |- ( ( 1 + 1 ) <_ X <-> 2 <_ X ) |
| 11 | 8 10 | bitrdi | |- ( X e. NN -> ( 1 < X <-> 2 <_ X ) ) |
| 12 | 2re | |- 2 e. RR |
|
| 13 | nnre | |- ( X e. NN -> X e. RR ) |
|
| 14 | leloe | |- ( ( 2 e. RR /\ X e. RR ) -> ( 2 <_ X <-> ( 2 < X \/ 2 = X ) ) ) |
|
| 15 | 12 13 14 | sylancr | |- ( X e. NN -> ( 2 <_ X <-> ( 2 < X \/ 2 = X ) ) ) |
| 16 | 2z | |- 2 e. ZZ |
|
| 17 | zltp1le | |- ( ( 2 e. ZZ /\ X e. ZZ ) -> ( 2 < X <-> ( 2 + 1 ) <_ X ) ) |
|
| 18 | 16 4 17 | sylancr | |- ( X e. NN -> ( 2 < X <-> ( 2 + 1 ) <_ X ) ) |
| 19 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 20 | 19 | breq1i | |- ( ( 2 + 1 ) <_ X <-> 3 <_ X ) |
| 21 | 18 20 | bitrdi | |- ( X e. NN -> ( 2 < X <-> 3 <_ X ) ) |
| 22 | 3re | |- 3 e. RR |
|
| 23 | leloe | |- ( ( 3 e. RR /\ X e. RR ) -> ( 3 <_ X <-> ( 3 < X \/ 3 = X ) ) ) |
|
| 24 | 22 13 23 | sylancr | |- ( X e. NN -> ( 3 <_ X <-> ( 3 < X \/ 3 = X ) ) ) |
| 25 | df-4 | |- 4 = ( 3 + 1 ) |
|
| 26 | 3z | |- 3 e. ZZ |
|
| 27 | zltp1le | |- ( ( 3 e. ZZ /\ X e. ZZ ) -> ( 3 < X <-> ( 3 + 1 ) <_ X ) ) |
|
| 28 | 26 4 27 | sylancr | |- ( X e. NN -> ( 3 < X <-> ( 3 + 1 ) <_ X ) ) |
| 29 | 28 | biimpa | |- ( ( X e. NN /\ 3 < X ) -> ( 3 + 1 ) <_ X ) |
| 30 | 25 29 | eqbrtrid | |- ( ( X e. NN /\ 3 < X ) -> 4 <_ X ) |
| 31 | 30 | a1d | |- ( ( X e. NN /\ 3 < X ) -> ( X e/ Prime -> 4 <_ X ) ) |
| 32 | 31 | ex | |- ( X e. NN -> ( 3 < X -> ( X e/ Prime -> 4 <_ X ) ) ) |
| 33 | neleq1 | |- ( X = 3 -> ( X e/ Prime <-> 3 e/ Prime ) ) |
|
| 34 | 33 | eqcoms | |- ( 3 = X -> ( X e/ Prime <-> 3 e/ Prime ) ) |
| 35 | 3prm | |- 3 e. Prime |
|
| 36 | pm2.24nel | |- ( 3 e. Prime -> ( 3 e/ Prime -> 4 <_ X ) ) |
|
| 37 | 35 36 | mp1i | |- ( 3 = X -> ( 3 e/ Prime -> 4 <_ X ) ) |
| 38 | 34 37 | sylbid | |- ( 3 = X -> ( X e/ Prime -> 4 <_ X ) ) |
| 39 | 38 | a1i | |- ( X e. NN -> ( 3 = X -> ( X e/ Prime -> 4 <_ X ) ) ) |
| 40 | 32 39 | jaod | |- ( X e. NN -> ( ( 3 < X \/ 3 = X ) -> ( X e/ Prime -> 4 <_ X ) ) ) |
| 41 | 24 40 | sylbid | |- ( X e. NN -> ( 3 <_ X -> ( X e/ Prime -> 4 <_ X ) ) ) |
| 42 | 21 41 | sylbid | |- ( X e. NN -> ( 2 < X -> ( X e/ Prime -> 4 <_ X ) ) ) |
| 43 | neleq1 | |- ( X = 2 -> ( X e/ Prime <-> 2 e/ Prime ) ) |
|
| 44 | 43 | eqcoms | |- ( 2 = X -> ( X e/ Prime <-> 2 e/ Prime ) ) |
| 45 | 2prm | |- 2 e. Prime |
|
| 46 | pm2.24nel | |- ( 2 e. Prime -> ( 2 e/ Prime -> 4 <_ X ) ) |
|
| 47 | 45 46 | mp1i | |- ( 2 = X -> ( 2 e/ Prime -> 4 <_ X ) ) |
| 48 | 44 47 | sylbid | |- ( 2 = X -> ( X e/ Prime -> 4 <_ X ) ) |
| 49 | 48 | a1i | |- ( X e. NN -> ( 2 = X -> ( X e/ Prime -> 4 <_ X ) ) ) |
| 50 | 42 49 | jaod | |- ( X e. NN -> ( ( 2 < X \/ 2 = X ) -> ( X e/ Prime -> 4 <_ X ) ) ) |
| 51 | 15 50 | sylbid | |- ( X e. NN -> ( 2 <_ X -> ( X e/ Prime -> 4 <_ X ) ) ) |
| 52 | 11 51 | sylbid | |- ( X e. NN -> ( 1 < X -> ( X e/ Prime -> 4 <_ X ) ) ) |
| 53 | 52 | imp | |- ( ( X e. NN /\ 1 < X ) -> ( X e/ Prime -> 4 <_ X ) ) |
| 54 | 53 | imp | |- ( ( ( X e. NN /\ 1 < X ) /\ X e/ Prime ) -> 4 <_ X ) |
| 55 | 3 5 54 | 3jca | |- ( ( ( X e. NN /\ 1 < X ) /\ X e/ Prime ) -> ( 4 e. ZZ /\ X e. ZZ /\ 4 <_ X ) ) |
| 56 | 55 | ex | |- ( ( X e. NN /\ 1 < X ) -> ( X e/ Prime -> ( 4 e. ZZ /\ X e. ZZ /\ 4 <_ X ) ) ) |
| 57 | eluz2 | |- ( X e. ( ZZ>= ` 4 ) <-> ( 4 e. ZZ /\ X e. ZZ /\ 4 <_ X ) ) |
|
| 58 | 56 57 | imbitrrdi | |- ( ( X e. NN /\ 1 < X ) -> ( X e/ Prime -> X e. ( ZZ>= ` 4 ) ) ) |
| 59 | 1 58 | sylbi | |- ( X e. ( ZZ>= ` 2 ) -> ( X e/ Prime -> X e. ( ZZ>= ` 4 ) ) ) |
| 60 | 59 | imp | |- ( ( X e. ( ZZ>= ` 2 ) /\ X e/ Prime ) -> X e. ( ZZ>= ` 4 ) ) |