This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqnprm | ⊢ ( 𝐴 ∈ ℤ → ¬ ( 𝐴 ↑ 2 ) ∈ ℙ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → 𝐴 ∈ ℝ ) |
| 3 | absresq | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 5 | 2 | recnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → 𝐴 ∈ ℂ ) |
| 6 | 5 | abscld | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 7 | 6 | recnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 8 | 7 | sqvald | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) |
| 9 | 4 8 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( 𝐴 ↑ 2 ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) |
| 10 | simpr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( 𝐴 ↑ 2 ) ∈ ℙ ) | |
| 11 | 9 10 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ∈ ℙ ) |
| 12 | nn0abscl | ⊢ ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℕ0 ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( abs ‘ 𝐴 ) ∈ ℕ0 ) |
| 14 | 13 | nn0zd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( abs ‘ 𝐴 ) ∈ ℤ ) |
| 15 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 16 | prmuz2 | ⊢ ( ( 𝐴 ↑ 2 ) ∈ ℙ → ( 𝐴 ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( 𝐴 ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 18 | eluz2gt1 | ⊢ ( ( 𝐴 ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) → 1 < ( 𝐴 ↑ 2 ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → 1 < ( 𝐴 ↑ 2 ) ) |
| 20 | 19 4 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → 1 < ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
| 21 | 15 20 | eqbrtrid | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( 1 ↑ 2 ) < ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
| 22 | 5 | absge0d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 23 | 1re | ⊢ 1 ∈ ℝ | |
| 24 | 0le1 | ⊢ 0 ≤ 1 | |
| 25 | lt2sq | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) → ( 1 < ( abs ‘ 𝐴 ) ↔ ( 1 ↑ 2 ) < ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) | |
| 26 | 23 24 25 | mpanl12 | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → ( 1 < ( abs ‘ 𝐴 ) ↔ ( 1 ↑ 2 ) < ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
| 27 | 6 22 26 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( 1 < ( abs ‘ 𝐴 ) ↔ ( 1 ↑ 2 ) < ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
| 28 | 21 27 | mpbird | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → 1 < ( abs ‘ 𝐴 ) ) |
| 29 | eluz2b1 | ⊢ ( ( abs ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( abs ‘ 𝐴 ) ∈ ℤ ∧ 1 < ( abs ‘ 𝐴 ) ) ) | |
| 30 | 14 28 29 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( abs ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 31 | nprm | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( abs ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ∈ ℙ ) | |
| 32 | 30 30 31 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ¬ ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ∈ ℙ ) |
| 33 | 11 32 | pm2.65da | ⊢ ( 𝐴 ∈ ℤ → ¬ ( 𝐴 ↑ 2 ) ∈ ℙ ) |