This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If ( alephA ) and ( alephsuc A ) are GCH-sets, then the successor aleph ( alephsuc A ) is equinumerous to the powerset of ( alephA ) . (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchaleph2 | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ suc 𝐴 ) ∈ GCH ) → ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl | ⊢ ( har ‘ ( ℵ ‘ 𝐴 ) ) ∈ On | |
| 2 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 3 | onenon | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ℵ ‘ 𝐴 ) ∈ dom card ) | |
| 4 | harsdom | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ dom card → ( ℵ ‘ 𝐴 ) ≺ ( har ‘ ( ℵ ‘ 𝐴 ) ) ) | |
| 5 | 2 3 4 | mp2b | ⊢ ( ℵ ‘ 𝐴 ) ≺ ( har ‘ ( ℵ ‘ 𝐴 ) ) |
| 6 | simp1 | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ suc 𝐴 ) ∈ GCH ) → 𝐴 ∈ On ) | |
| 7 | alephgeom | ⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) | |
| 8 | 6 7 | sylib | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ suc 𝐴 ) ∈ GCH ) → ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 9 | ssdomg | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) ) | |
| 10 | 2 8 9 | mpsyl | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ suc 𝐴 ) ∈ GCH ) → ω ≼ ( ℵ ‘ 𝐴 ) ) |
| 11 | simp2 | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ suc 𝐴 ) ∈ GCH ) → ( ℵ ‘ 𝐴 ) ∈ GCH ) | |
| 12 | alephsuc | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) = ( har ‘ ( ℵ ‘ 𝐴 ) ) ) | |
| 13 | 6 12 | syl | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ suc 𝐴 ) ∈ GCH ) → ( ℵ ‘ suc 𝐴 ) = ( har ‘ ( ℵ ‘ 𝐴 ) ) ) |
| 14 | simp3 | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ suc 𝐴 ) ∈ GCH ) → ( ℵ ‘ suc 𝐴 ) ∈ GCH ) | |
| 15 | 13 14 | eqeltrrd | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ suc 𝐴 ) ∈ GCH ) → ( har ‘ ( ℵ ‘ 𝐴 ) ) ∈ GCH ) |
| 16 | gchpwdom | ⊢ ( ( ω ≼ ( ℵ ‘ 𝐴 ) ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( har ‘ ( ℵ ‘ 𝐴 ) ) ∈ GCH ) → ( ( ℵ ‘ 𝐴 ) ≺ ( har ‘ ( ℵ ‘ 𝐴 ) ) ↔ 𝒫 ( ℵ ‘ 𝐴 ) ≼ ( har ‘ ( ℵ ‘ 𝐴 ) ) ) ) | |
| 17 | 10 11 15 16 | syl3anc | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ suc 𝐴 ) ∈ GCH ) → ( ( ℵ ‘ 𝐴 ) ≺ ( har ‘ ( ℵ ‘ 𝐴 ) ) ↔ 𝒫 ( ℵ ‘ 𝐴 ) ≼ ( har ‘ ( ℵ ‘ 𝐴 ) ) ) ) |
| 18 | 5 17 | mpbii | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ suc 𝐴 ) ∈ GCH ) → 𝒫 ( ℵ ‘ 𝐴 ) ≼ ( har ‘ ( ℵ ‘ 𝐴 ) ) ) |
| 19 | ondomen | ⊢ ( ( ( har ‘ ( ℵ ‘ 𝐴 ) ) ∈ On ∧ 𝒫 ( ℵ ‘ 𝐴 ) ≼ ( har ‘ ( ℵ ‘ 𝐴 ) ) ) → 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) | |
| 20 | 1 18 19 | sylancr | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ suc 𝐴 ) ∈ GCH ) → 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) |
| 21 | gchaleph | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) ) | |
| 22 | 20 21 | syld3an3 | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ suc 𝐴 ) ∈ GCH ) → ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) ) |