This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If ( alephA ) and ( alephsuc A ) are GCH-sets, then the successor aleph ( alephsuc A ) is equinumerous to the powerset of ( alephA ) . (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchaleph2 | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ( aleph ` suc A ) e. GCH ) -> ( aleph ` suc A ) ~~ ~P ( aleph ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl | |- ( har ` ( aleph ` A ) ) e. On |
|
| 2 | alephon | |- ( aleph ` A ) e. On |
|
| 3 | onenon | |- ( ( aleph ` A ) e. On -> ( aleph ` A ) e. dom card ) |
|
| 4 | harsdom | |- ( ( aleph ` A ) e. dom card -> ( aleph ` A ) ~< ( har ` ( aleph ` A ) ) ) |
|
| 5 | 2 3 4 | mp2b | |- ( aleph ` A ) ~< ( har ` ( aleph ` A ) ) |
| 6 | simp1 | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ( aleph ` suc A ) e. GCH ) -> A e. On ) |
|
| 7 | alephgeom | |- ( A e. On <-> _om C_ ( aleph ` A ) ) |
|
| 8 | 6 7 | sylib | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ( aleph ` suc A ) e. GCH ) -> _om C_ ( aleph ` A ) ) |
| 9 | ssdomg | |- ( ( aleph ` A ) e. On -> ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) ) |
|
| 10 | 2 8 9 | mpsyl | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ( aleph ` suc A ) e. GCH ) -> _om ~<_ ( aleph ` A ) ) |
| 11 | simp2 | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ( aleph ` suc A ) e. GCH ) -> ( aleph ` A ) e. GCH ) |
|
| 12 | alephsuc | |- ( A e. On -> ( aleph ` suc A ) = ( har ` ( aleph ` A ) ) ) |
|
| 13 | 6 12 | syl | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ( aleph ` suc A ) e. GCH ) -> ( aleph ` suc A ) = ( har ` ( aleph ` A ) ) ) |
| 14 | simp3 | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ( aleph ` suc A ) e. GCH ) -> ( aleph ` suc A ) e. GCH ) |
|
| 15 | 13 14 | eqeltrrd | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ( aleph ` suc A ) e. GCH ) -> ( har ` ( aleph ` A ) ) e. GCH ) |
| 16 | gchpwdom | |- ( ( _om ~<_ ( aleph ` A ) /\ ( aleph ` A ) e. GCH /\ ( har ` ( aleph ` A ) ) e. GCH ) -> ( ( aleph ` A ) ~< ( har ` ( aleph ` A ) ) <-> ~P ( aleph ` A ) ~<_ ( har ` ( aleph ` A ) ) ) ) |
|
| 17 | 10 11 15 16 | syl3anc | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ( aleph ` suc A ) e. GCH ) -> ( ( aleph ` A ) ~< ( har ` ( aleph ` A ) ) <-> ~P ( aleph ` A ) ~<_ ( har ` ( aleph ` A ) ) ) ) |
| 18 | 5 17 | mpbii | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ( aleph ` suc A ) e. GCH ) -> ~P ( aleph ` A ) ~<_ ( har ` ( aleph ` A ) ) ) |
| 19 | ondomen | |- ( ( ( har ` ( aleph ` A ) ) e. On /\ ~P ( aleph ` A ) ~<_ ( har ` ( aleph ` A ) ) ) -> ~P ( aleph ` A ) e. dom card ) |
|
| 20 | 1 18 19 | sylancr | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ( aleph ` suc A ) e. GCH ) -> ~P ( aleph ` A ) e. dom card ) |
| 21 | gchaleph | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` suc A ) ~~ ~P ( aleph ` A ) ) |
|
| 22 | 20 21 | syld3an3 | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ( aleph ` suc A ) e. GCH ) -> ( aleph ` suc A ) ~~ ~P ( aleph ` A ) ) |