This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A + ~~P A , then A is a GCH-set. The much simpler converse to gchhar . (Contributed by Mario Carneiro, 2-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hargch | ⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → 𝐴 ∈ GCH ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl | ⊢ ( har ‘ 𝐴 ) ∈ On | |
| 2 | sdomdom | ⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → 𝑥 ≼ ( har ‘ 𝐴 ) ) | |
| 3 | ondomen | ⊢ ( ( ( har ‘ 𝐴 ) ∈ On ∧ 𝑥 ≼ ( har ‘ 𝐴 ) ) → 𝑥 ∈ dom card ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → 𝑥 ∈ dom card ) |
| 5 | onenon | ⊢ ( ( har ‘ 𝐴 ) ∈ On → ( har ‘ 𝐴 ) ∈ dom card ) | |
| 6 | 1 5 | ax-mp | ⊢ ( har ‘ 𝐴 ) ∈ dom card |
| 7 | cardsdom2 | ⊢ ( ( 𝑥 ∈ dom card ∧ ( har ‘ 𝐴 ) ∈ dom card ) → ( ( card ‘ 𝑥 ) ∈ ( card ‘ ( har ‘ 𝐴 ) ) ↔ 𝑥 ≺ ( har ‘ 𝐴 ) ) ) | |
| 8 | 4 6 7 | sylancl | ⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( ( card ‘ 𝑥 ) ∈ ( card ‘ ( har ‘ 𝐴 ) ) ↔ 𝑥 ≺ ( har ‘ 𝐴 ) ) ) |
| 9 | 8 | ibir | ⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( card ‘ 𝑥 ) ∈ ( card ‘ ( har ‘ 𝐴 ) ) ) |
| 10 | harcard | ⊢ ( card ‘ ( har ‘ 𝐴 ) ) = ( har ‘ 𝐴 ) | |
| 11 | 9 10 | eleqtrdi | ⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( card ‘ 𝑥 ) ∈ ( har ‘ 𝐴 ) ) |
| 12 | elharval | ⊢ ( ( card ‘ 𝑥 ) ∈ ( har ‘ 𝐴 ) ↔ ( ( card ‘ 𝑥 ) ∈ On ∧ ( card ‘ 𝑥 ) ≼ 𝐴 ) ) | |
| 13 | 12 | simprbi | ⊢ ( ( card ‘ 𝑥 ) ∈ ( har ‘ 𝐴 ) → ( card ‘ 𝑥 ) ≼ 𝐴 ) |
| 14 | 11 13 | syl | ⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( card ‘ 𝑥 ) ≼ 𝐴 ) |
| 15 | cardid2 | ⊢ ( 𝑥 ∈ dom card → ( card ‘ 𝑥 ) ≈ 𝑥 ) | |
| 16 | domen1 | ⊢ ( ( card ‘ 𝑥 ) ≈ 𝑥 → ( ( card ‘ 𝑥 ) ≼ 𝐴 ↔ 𝑥 ≼ 𝐴 ) ) | |
| 17 | 4 15 16 | 3syl | ⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → ( ( card ‘ 𝑥 ) ≼ 𝐴 ↔ 𝑥 ≼ 𝐴 ) ) |
| 18 | 14 17 | mpbid | ⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → 𝑥 ≼ 𝐴 ) |
| 19 | domnsym | ⊢ ( 𝑥 ≼ 𝐴 → ¬ 𝐴 ≺ 𝑥 ) | |
| 20 | 18 19 | syl | ⊢ ( 𝑥 ≺ ( har ‘ 𝐴 ) → ¬ 𝐴 ≺ 𝑥 ) |
| 21 | 20 | con2i | ⊢ ( 𝐴 ≺ 𝑥 → ¬ 𝑥 ≺ ( har ‘ 𝐴 ) ) |
| 22 | sdomen2 | ⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( 𝑥 ≺ ( har ‘ 𝐴 ) ↔ 𝑥 ≺ 𝒫 𝐴 ) ) | |
| 23 | 22 | notbid | ⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( ¬ 𝑥 ≺ ( har ‘ 𝐴 ) ↔ ¬ 𝑥 ≺ 𝒫 𝐴 ) ) |
| 24 | 21 23 | imbitrid | ⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( 𝐴 ≺ 𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴 ) ) |
| 25 | imnan | ⊢ ( ( 𝐴 ≺ 𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴 ) ↔ ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) | |
| 26 | 24 25 | sylib | ⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) |
| 27 | 26 | alrimiv | ⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) |
| 28 | 27 | olcd | ⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) |
| 29 | relen | ⊢ Rel ≈ | |
| 30 | 29 | brrelex2i | ⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ∈ V ) |
| 31 | pwexb | ⊢ ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V ) | |
| 32 | 30 31 | sylibr | ⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → 𝐴 ∈ V ) |
| 33 | elgch | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) ) | |
| 34 | 32 33 | syl | ⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) ) |
| 35 | 28 34 | mpbird | ⊢ ( ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 → 𝐴 ∈ GCH ) |