This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017) (Revised by AV, 5-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvinim0ffz | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ↔ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 → 𝐹 Fn ( 0 ... 𝐾 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 𝐹 Fn ( 0 ... 𝐾 ) ) |
| 3 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 0 ∈ ℕ0 ) |
| 5 | simpr | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) | |
| 6 | nn0ge0 | ⊢ ( 𝐾 ∈ ℕ0 → 0 ≤ 𝐾 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 0 ≤ 𝐾 ) |
| 8 | elfz2nn0 | ⊢ ( 0 ∈ ( 0 ... 𝐾 ) ↔ ( 0 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 0 ≤ 𝐾 ) ) | |
| 9 | 4 5 7 8 | syl3anbrc | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 0 ∈ ( 0 ... 𝐾 ) ) |
| 10 | id | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℕ0 ) | |
| 11 | nn0re | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) | |
| 12 | 11 | leidd | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ≤ 𝐾 ) |
| 13 | elfz2nn0 | ⊢ ( 𝐾 ∈ ( 0 ... 𝐾 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝐾 ) ) | |
| 14 | 10 10 12 13 | syl3anbrc | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ( 0 ... 𝐾 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ( 0 ... 𝐾 ) ) |
| 16 | fnimapr | ⊢ ( ( 𝐹 Fn ( 0 ... 𝐾 ) ∧ 0 ∈ ( 0 ... 𝐾 ) ∧ 𝐾 ∈ ( 0 ... 𝐾 ) ) → ( 𝐹 “ { 0 , 𝐾 } ) = { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ) | |
| 17 | 2 9 15 16 | syl3anc | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐹 “ { 0 , 𝐾 } ) = { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ) |
| 18 | 17 | ineq1d | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 19 | 18 | eqeq1d | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ↔ ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) ) |
| 20 | disj | ⊢ ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ↔ ∀ 𝑣 ∈ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ¬ 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) | |
| 21 | fvex | ⊢ ( 𝐹 ‘ 0 ) ∈ V | |
| 22 | fvex | ⊢ ( 𝐹 ‘ 𝐾 ) ∈ V | |
| 23 | eleq1 | ⊢ ( 𝑣 = ( 𝐹 ‘ 0 ) → ( 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) | |
| 24 | 23 | notbid | ⊢ ( 𝑣 = ( 𝐹 ‘ 0 ) → ( ¬ 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 25 | df-nel | ⊢ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) | |
| 26 | 24 25 | bitr4di | ⊢ ( 𝑣 = ( 𝐹 ‘ 0 ) → ( ¬ 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 27 | eleq1 | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝐾 ) → ( 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) | |
| 28 | 27 | notbid | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝐾 ) → ( ¬ 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 29 | df-nel | ⊢ ( ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) | |
| 30 | 28 29 | bitr4di | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝐾 ) → ( ¬ 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 31 | 21 22 26 30 | ralpr | ⊢ ( ∀ 𝑣 ∈ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ¬ 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 32 | 20 31 | bitri | ⊢ ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ↔ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 33 | 19 32 | bitrdi | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ↔ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) ) |